精英家教网 > 高中数学 > 题目详情

在平面直角坐标系中,点为动点,分别为椭圆的左右焦点.已知△为等腰三角形.(1)求椭圆的离心率;(2)设直线与椭圆相交于两点,是直线上的点,满足,求点的轨迹方程.

 

 

【答案】

(1)  ; (2) .

【解析】

试题分析:(1)设出焦点,由条件为等腰三角形,分析出,代入两点间距离公式,利用消去,得a、c的关系,得出e的值;(2)由,推出椭圆方程,由,得,得,与椭圆:联立得交点A,B的坐标,再表示代入中,整理得点的轨迹方程.

试题解析:(1)设

由题意,可得,即,              2分

整理得,得 (舍)或,所以.            4分 

(2)由(1)知,可得椭圆方程为.

  直线方程为                            5分

两点的坐标满足方程组,消去y并整理得  6分

解得得方程组的解,           8分

不妨设,,设的坐标为

,,                10分

.

于是,          11分

化简得,                        13分

代入

.因此,点的轨迹方程是.   14分

考点:1.两点间距离公式;2.斜率公式.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案