精英家教网 > 高中数学 > 题目详情
6.已知△ABC内角A,B,C的对边分别是a,b,c,且满足sin2B+sin2C-sin2A=sinBsinC
(1)求角A的大小;
(2)已知函数f(x)=sin(ωx+A),ω>0的最小正周期为π,求f(x)的单调减区间.

分析 (1)由正弦定理化简已知等式可得b2+c2-a2=bc,利用余弦定理可求cosA,结合A∈(0,π),可得A.
(2)由周期公式可求ω,解得函数解析式f(x)=sin(2x+$\frac{π}{3}$),由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,(k∈Z),可得f(x)的减区间.

解答 (本题满分为12分)
解:(1)∵sin2B+sin2C-sin2A=sinBsinC,
∴b2+c2-a2=bc,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∴由A∈(0,π),可得:A=$\frac{π}{3}$….(6分)
(2)由题意,ω=$\frac{2π}{π}$=2,
∴f(x)=sin(2x+$\frac{π}{3}$),
∴由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,(k∈Z),可得:kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,(k∈Z),
∴f(x)的减区间为:[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],(k∈Z)….(12分)

点评 本题主要考查了正弦定理,余弦定理,周期公式以及正弦函数的单调性,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设函数f(x)是以2为周期的奇函数,已知x∈(0,1)时,f(x)=2x,则f(x)在(2017,2018)上是(  )
A.增函数,且f(x)>0B.减函数,且f(x)<0C.增函数,且f(x)<0D.减函数,且f(x)>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设等差数列{an}的公差d不为0,若a5=a12,且a1与a21的等比中项为a5,则a1=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,内角A、B、C所对的边分别是a,b,c,若a2+b2+ab=1,c=1,则C=$\frac{2π}{3}$,△ABC的面积最大值为$\frac{\sqrt{3}}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设f(x)=cos2x-sin2x,把y=f(x)的图象向右平移φ(φ>0)个单位后,恰好得到函数y=f(x)的图象,则φ的值可以为(  )
A.$\frac{π}{2}$B.$\frac{3π}{4}$C.πD.$\frac{3π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列说法正确的是(  )
A.若|$\vec a|>|\vec b|$,$\vec a>\vec b$B.若$|\vec a|=|\vec b|$,$\vec a=\vec b$
C.若$\vec a=\vec b$,则$\vec a∥\vec b$D.若$\vec a≠\vec b$,则$\vec a$与$\vec b$不是共线向量

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.由直线y=x-3上的点向圆(x+2)2+(y-3)2=1引切线,则切线长的最小值为$\sqrt{31}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知a,b,c都是正数,且4a+9b+c=3,则$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$的最小值是12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知i是虚数单位,复数$\frac{1+i}{(1-i)^{2}}$的虚部为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$iD.-$\frac{1}{2}$i

查看答案和解析>>

同步练习册答案