精英家教网 > 高中数学 > 题目详情
5.已知抛物线y2=4x,过焦点且倾斜角为60°的直线与抛物线交于A、B两点,则△AOB的面积为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{8\sqrt{3}}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

分析 求出抛物线的焦点坐标F(1,0),用点斜式设出直线方程:y=$\sqrt{3}$(x-1),与抛物线方程联解得一个关于x的一元二次方程,利用根与系数的关系结合曲线的弦长的公式,可以求出线段AB的长度.利用点到直线的距离求出三角形的高,即可求解面积.

解答 解:根据抛物线y2=4x方程得:焦点坐标F(1,0),
直线AB的斜率为k=tan60°=$\sqrt{3}$
由直线方程的点斜式方程,设AB:y=$\sqrt{3}$(x-1)
将直线方程代入到抛物线方程当中,得:3(x-1)2=4x
整理得:3x2-10x+3=0
设A(x1,y1),B(x2,y2
由一元二次方程根与系数的关系得:x1+x2=$\frac{10}{3}$,x1•x2=1,所以弦长|AB|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\sqrt{1+3}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{16}{3}$.
O到直线的距离为:d=$\frac{\sqrt{3}}{\sqrt{3+1}}$=$\frac{\sqrt{3}}{2}$,
△AOB的面积为:$\frac{1}{2}×\frac{16}{3}×\frac{\sqrt{3}}{2}$=$\frac{4\sqrt{3}}{3}$.
故选:C.

点评 本题以抛物线为载体,考查了圆锥曲线的弦长问题,属于难题.本题运用了直线方程与抛物线方程联解的方法,对运算的要求较高.利用一元二次方程根与系数的关系和弦长公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.求函数y=x2-2ax-a2-1在[0,2]上的最小值g(a)和最大值M(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知圆的两条弦AB,CD,延长AB,CD交于圆外一点E,过E作AD的平行线交CB的延长线于F,过点F作圆的切线FG,G为切点.求证:
(I)△EFC∽△BFE;
(Ⅱ)FG=FE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\sqrt{2}$cos$({x-\frac{π}{12}})$,x∈R.
(Ⅰ)求$f({-\frac{π}{6}})$的值;
(Ⅱ) 在平面直角坐标系中,以Ox为始边作角θ,它的终边与单位圆相交于点P($\frac{3}{5}$,-$\frac{4}{5}$),求$f({2θ+\frac{π}{3}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:?x∈(0,+∞),x2≥x-1,则命题p的否定形式是(  )
A.¬p:?x0∈(0,+∞),x02≥x0-1B.¬p:?x0∈(-∞,+0),x02≥x0-1
C.¬p:?x0∈(0,+∞),x02<x0-1D.¬p:?x0∈(-∞,+0),x02<x0-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点A(0,5)是椭圆$\frac{{x}^{2}}{98}$+$\frac{{y}^{2}}{49}$=1内一定点,P是这个椭圆上的点,要使|PA|的值最大,则P的坐标应是$(±4\sqrt{3},-5)$,|PA|的最大值等于2$\sqrt{37}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知a12+a22+…+an2=1,x12+x22+…+xn2=1,求证:a1x1+a2x2+…+anxn≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知椭圆$C:\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}(a>b>0)$直线$y=x+\sqrt{6}$与以原点为圆心,以椭圆C的短半轴为半径的圆相切,F1,F2为其左右焦点,P为椭圆C上的任意一点,△F1PF2的重心为G,内心为I,且IG∥F1F2.已知A为椭圆C上的左顶点,直线l过右焦点F2与椭圆C交于M,N两点,若AM,AN的斜率k1,k2满足${k_1}+{k_2}=-\frac{1}{2}$,直线MN的方程y=2x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-1(x≥0)}\\{f(x+1)(x<0)}\end{array}\right.$,若方程f(x)=-x+a有且只有两个不等的实数根,则实数a的取值范围为(  )
A.(-∞,0)B.[0,1)C.(-∞,1)D.[0,+∞)

查看答案和解析>>

同步练习册答案