精英家教网 > 高中数学 > 题目详情
设{an}是公比为正数的等比数列,a1=2,a3=a2+4,
(1)求{an}的通项公式;
(2)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.
(1) an=2·2n-1=2n(n∈N*)    (2) Sn=2n+1+n2-2

解:(1)设q为等比数列{an}的公比,
则由a1=2,a3=a2+4,
得2q2=2q+4,即q2-q-2=0,
解得q=2或q=-1(舍去),因此q=2.
所以{an}的通项公式为an=2·2n-1=2n(n∈N*).
(2)∵{bn}是等差数列,b1=1,d=2,
∴Sn=a1+a2+…+an+b1+b2+…+bn
=+n×1+×2
=2n+1+n2-2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

若数列满足,则称数列为“平方递推数列”.已知数列中,,点在函数的图象上,其中为正整数.
(1)证明数列是“平方递推数列”,且数列为等比数列;
(2)设(1)中“平方递推数列”的前项积为
,求
(3)在(2)的条件下,记,求数列的前项和,并求使的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列的首项为,公差为,等比数列的首项为,公比为.
(1)求数列的通项公式;
(2)设第个正方形的边长为,求前个正方形的面积之和.
(注:表示的最小值.)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和为Sn,对一切正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,且在点Pn(n,Sn)处的切线的斜率为kn.
(1)求数列{an}的通项公式;
(2)若bn=2knan,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}中,a1=1,前n项和Sn=an.
(1)求a2,a3;
(2)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知各项均为正数的数列{an}的前n项和为Sn,首项为a1,且,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)若=,设cn=,求数列{cn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若数列{an}是等差数列,则数列{bn}也为等差数列.类比这一性质可知,若正项数列{cn}是等比数列,且{dn}也是等比数列,则dn的表达式应为(  )
A.dnB.dn
C.dnD.dn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等差数列{an}的前n项和为Sn,已知am-1+am+1-=0,S2m-1=38,则m=(  )
A.38B.20C.10D.9

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若数列{an}的前n项和Sn=n2+3n,则a6+a7+a8=________.

查看答案和解析>>

同步练习册答案