精英家教网 > 高中数学 > 题目详情
已知半径为10的圆O中,弦AB的长为10.弦AB所对的圆心角α=
 
rad,α所在的扇形的弧长l=
 
,α所在的扇形的面积S=
 
考点:扇形面积公式
专题:计算题,三角函数的求值
分析:利用圆的性质,可得弦AB所对的圆心角,利用扇形的弧长、面积公式可得结论.
解答: 解:如图,连接OA、OB,则
∵OA=OB=AB=10,
∴△OAB是等边三角形;
∴∠AOB=
π
3

∴扇形的弧长l=10×
π
3
=
10π
3

扇形的面积S=
1
2
lr
=
1
2
×
10π
3
×10
=
50π
3

故答案为:
π
3
10π
3
50π
3
点评:本题考查扇形的弧长、面积公式,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对任意实数x和任意θ∈[0,
π
2
]
,恒有(x+3+2sinθcosθ)2+(x+asinθ+acosθ)2
1
8
,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C的参数方程
x=cosθ
y=1+cos2θ.
(θ为参数)
,则曲线C的一般方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若ax2+4ax+3≥0恒成立,a的取值范围是(  )
A、(0,
3
4
]
B、(0,
3
4
C、[0,
3
4
]
D、[0,
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值:
(Ⅰ)
1
2
-1
-
(
3
5
)0+(
9
4
)-0.5+
4(
2
-e)
4

(Ⅱ)lg25+lg2lg50+21+
1
2
log25

查看答案和解析>>

科目:高中数学 来源: 题型:

求f(x)=x2-2ax+2在[-2,4]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+
π
6
)+cos(2x-
3
)+2cos2x

(1)求f(x)的最大值和最小正周期;
(2)若x0∈[0,
π
2
]且f(x0)=2
,求x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°
.M是PD的中点.
(1)证明PB∥平面MAC;
(2)证明平面PAB⊥平面ABCD;
(3)求直线PC与平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={x∈R|0<x≤2},B={x∈R|x2-x-2>0},则A∩(CRB)=(  )
A、(-1,2)
B、[-1,2]
C、(0,2)
D、(0,2]

查看答案和解析>>

同步练习册答案