精英家教网 > 高中数学 > 题目详情
已知f(x)=
ax+b
x2+1
为定义在R上的奇函数,且f(1)=
1
2

(1)求f(x)的解析式;
(2)判断并证明y=f(x)在(-1,0)上的单调性.
(1)因为f(x)=
ax+b
x2+1
为定义在R上的奇函数,且f(1)=
1
2

所以
f(0)=0
f(1)=
1
2
,即
b=0
a+b
2
=
1
2
,解得:
a=1
b=0

所以,f(x)=
x
x2+1

(2)f(x)=
x
x2+1
在(-1,0)上为单调增函数.
证明:任取x1,x2∈(-1,0)且x1<x2
f(x1)-f(x2)=
x1
x12+1
-
x2
x22+1

=
x1x22+x1-x2x12-x2
(x12+1)(x22+1)

=
(1-x1x2)(x1-x2)
(x12+1)(x22+1)

因为x1,x2∈(-1,0)且x1<x2
所以1-x1x2>0,x1-x2<0.
所以,f(x1)-f(x2)=
(1-x1x2)(x1-x2)
(x12+1)(x22+1)
<0

即f(x1)<f(x2).
所以,函数y=f(x)在(-1,0)上的单调递增.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ax+a-x(a>0且a≠1),
(1)证明函数f ( x )的图象关于y轴对称;
(2)判断f(x)在(0,+∞)上的单调性,并用定义加以证明;
(3)当x∈[1,2]时函数f (x )的最大值为
103
,求此时a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax+b(a>0且a≠1,b为常数)的图象经过点(1,1)且0<f(0)<1,记m=
1
2
[f-1(x1)+f-1(x2)]
n=f-1(
x1+x2
2
)
(x1、x2是两个不相等的正实数),试比较m、n的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)=ax+a-x,若f(1)=3,,求f(2)的值.
(2)设函数f(x)=log3(ax-bx),且f(1)=1,f(2)=log312.求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax(a>1),g(x)=bx(b>1),当f(x1)=g(x2)=2时,有x1>x2,则a,b的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•新疆模拟)已知f(x)=ax-lnx,x∈(0,e],g(x)=
lnx
x
,其中e是自然对数的底,a∈R.
(Ⅰ)a=1时,求f(x)的单调区间、极值;
(Ⅱ)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值,若不存在,说明理由;
(Ⅲ)在(1)的条件下,求证:f(x)>g(x)+
1
2

查看答案和解析>>

同步练习册答案