精英家教网 > 高中数学 > 题目详情
若过椭圆
x2
12
+
y2
3
=1内一点(2,1)的弦被该点平分,求该弦所在直线的方程.
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设出直线与椭圆的交点坐标,代入椭圆方程,利用点差法,结合M(2,1)为AB的中点,求出直线的斜率,即可得到直线的方程.
解答: 解:设直线与椭圆的交点为A(x1,y1)、B(x2,y2
∵M(2,1)为AB的中点
∴x1+x2=4,y1+y2=2
∵又A、B两点在椭圆上,则x12+4y12=36,x22+4y22=36,
两式相减得(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0
∴kAB=-
1
2

故所求直线的方程为y-1=-
1
2
(x-2),即x+2y-4=0.
点评:本题考查直线与椭圆的位置关系,考查点差法的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,a2=2,且an+2=(2+cosnπ)(an-1)+3,n∈N*
(1)求通项公式an
(2)求数列的前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点F1(-
3
,0),F2(
3
,0)
,曲线C是使|RF1|+|RF2|为定值的点R的轨迹,曲线C过点T(0,1).
(1)求曲线C的方程;
(2)直线l过点F2,且与曲线C交于PQ,当△F1PQ的面积取得最大值时,求直线l的方程;
(3)设点P是曲线C上除长轴端点外的任一点,连接PF1、PF2,设∠F1PF2的角平分线PM交曲线C的长轴于点M(m,0),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的一个顶点为A(0,-1),焦点在x轴上,离心率e=
6
3

(1)求椭圆标准方程;
(2)设直线l1:y=x+m,直线l1与(1)中的椭圆有两个不同的交点M、N,求m的取值范围;
(3)直线l2:x=ty+1,t∈R与(1)中的椭圆有两个不同的交点P,Q,当△OPQ的面积S取到最大值时,求直线l2的方程.(O是坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,经过点(0,
2
)且斜率为k的直线l与椭圆
x2
2
+y2
=1有两个不同的交点P、Q,
(Ⅰ)若|PQ|=
4
3
;求直线l的斜率k的值;
(Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A、B,是否存在常数k,使得向量
OP
+
OQ
AB
共线,如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

正三角形ABC的边长为1,且
BC
=
a
CA
=
b
AB
=
c
,求|
a
-
b
+2
c
|
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC的三个内角A、B、C所对的边
(1)若△ABC面积S△ABC=
3
2
,c=2,A=60°,求a、b的值;
(2)若
a
c
<cosB,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=
2
3
,an+1•(1+an)=1.
(1)试计算a2,a3,a4,a5的值;
(2)猜想|an+1-an|与
1
15
(
2
5
)n-1
(其中n∈N*)的大小关系,并证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是椭圆
x2
a2
+
y2
b2
=1(a>b>0)上一点,且满足
PF1
PF2
=
1
2
,则椭圆的离心率的取值范围是
 

查看答案和解析>>

同步练习册答案