精英家教网 > 高中数学 > 题目详情
已知tanα=-
15
,且α∈(
2
,2π),则cosα=
 
考点:同角三角函数基本关系的运用
专题:计算题,三角函数的求值
分析:先利用α的范围确定cosα的范围,进而利用同脚三角函数的基本关系,求得cosα的值.
解答: 解:已知tanα=-
15
,且α∈(
2
,2π),
故有sinα<0,cosα>0,
∴cosα=
1
1+tan2α
=
1
1+15
=
1
4

故答案为:
1
4
点评:本题主要考查了同角三角函数基本关系的应用.解题的关键是利用那个角的范围确定三角函数符号,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是直角梯形,AD∥BC,∠BAD=90°,PA⊥平面ABCD,且PA=AD=AB=1.
(1)若BC=3,求异面直线PC与BD所成角的余弦值;
(2)若BC=2,求证:平面BPC⊥平面PCD;
(3)设E为PC的中点,在线段BC上是否存在一点F,使得EF⊥CD?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)的图象经过点(0,1),那么函数y=f(x+4)的图象经过点
 

查看答案和解析>>

科目:高中数学 来源: 题型:

2x3-x2-2x+1=0的三个根分别是α,β,γ,则α+β+γ+αβγ的值为(  )
A、-1
B、0
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},Sn为其前n项和,且Sn+1=4an+2.(n∈N*),a1=1,
(1)设bn=an+1-2an,求bn
(2)设cn=
an
2n
,求证:{cn}是等差数列
(3)求an

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的斜率为k,倾斜角是α,-1<k<1,则α的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=3sin(2x+
π
4
)的图象如何由函数y=sinx的图象变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足f(x)=-f(x+1),求证:函数y=f(x)是周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,an+1=
an
an+2
(n∈N*).若bn+1=(n-2λ)•(
1
an
+1)
(n∈N*),b1=-λ,且数列{bn}是单调递增数列,则实数λ的取值范围是(  )
A、λ>
2
3
B、λ>
3
2
C、λ<
2
3
D、λ<
3
2

查看答案和解析>>

同步练习册答案