【题目】阅读如图所示的程序框图,输出的结果S的值为( )
A.0
B.
C.
D.
【答案】B
【解析】解:本框图为“当型“循环结构 当满足n≤2010时,
执行循环体:s=s+sin
根据s=0,n=1
第1次循环:s=0+sin =
第2次循环:s= + =
第3次循环:s= +0=
第4次循环:s= +(﹣ )=
第5次循环:s= +2(﹣ )=0
第6次循环:s=0+0=0
第7次循环:s=
…
当n为6的倍数时,s的值为0
n=2010时,为6的倍数,故此时s=0
n=2011时,s=
故选B
【考点精析】利用算法的循环结构对题目进行判断即可得到答案,需要熟知在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,循环结构可细分为两类:当型循环结构和直到型循环结构.
科目:高中数学 来源: 题型:
【题目】为了了解某学段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].按上述分组方法得到的频率分布直方图如右图所示,已知图中从左到右的前3个组的频率之比为3:8:19,且第二组的频数为8.
(1)将频率当作概率,请估计该学段学生中百米成绩在[16,17)内的人数以及所有抽取学生的百米成绩的中位数(精确到0.01秒);
(2)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市地产数据研究所的数据显示,2016年该市新建住宅销售均价走势如图所示,3月至7月房价上涨过快,政府从8月采取宏观调控措施,10月份开始房价得到很好的抑制.
(1)地产数据研究所发现,3月至7月的各月均价(万元/平方米)与月份之间具有较强的线性相关关系,试求关于的回归直线方程;
(2)若政府不调控,按照3月份至7月份房价的变化趋势预测12月份该市新建住宅的销售均价.
参考数据:,,;
参考公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列{an}的前n项和为Sn , 且4Sn=(an+1)2(n∈N+). (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn为数列{ }的前n项和,证明: ≤Tn<1(n∈N+).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型商场为了了解顾客的购物信息,随机在商场收集了位顾客的购物总额(单位元),将数据按照 , 分成组,制成了如下图所示的频率分布直方图:
该商场每日大约有名顾客,为了增加商场销售总额,近期对一次性购物不低于元的顾客发放纪念品.
(1)求频率分布直方图中的值,并估计每日应准备纪念品的数量;
(2)若每日按分层抽样的方法从购物总额在三组对应的顾客中抽取名顾客,这名顾客中再随机抽取两名超级顾客,每人奖励一个超级礼包,求获得超级礼包的两人来自不同组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若 且sinC=cosA (Ⅰ)求角A、B、C的大小;
(Ⅱ)函数f(x)=sin(2x+A)+cos(2x﹣ ),求函数f(x)单调递增区间,指出它相邻两对称轴间的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(2x+ )(x∈R),下面结论错误的是( )
A.函数f(x)的最小正周期为π
B.函数f(x)是偶函数
C.函数f(x)的图象关于直线 对称
D.函数f(x)在区间[0, ]上是增函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数(其中)的部分图象如图所示,把函数的图像向右平移个单位长度,再向下平移个单位,得到函数的图像。
(1)当时,若方程恰好有两个不同的根,求的取值范围及的值;
(2)令,若对任意都有恒成立,求的最大值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com