分析 由(2-an)•an+1=1,可得$\frac{1}{{a}_{n+1}-1}-\frac{1}{{a}_{n}-1}$=-1,利用等差数列的通项公式即可得出.
解答 解:∵(2-an)•an+1=1,
∴$\frac{1}{{a}_{n+1}-1}-\frac{1}{{a}_{n}-1}$=$\frac{1}{\frac{1}{2-{a}_{n}}-1}$-$\frac{1}{{a}_{n}-1}$=$\frac{2-{a}_{n}}{{a}_{n}-1}$-$\frac{1}{{a}_{n}-1}$=-1,
∴数列$\{\frac{1}{{a}_{n}-1}\}$是等差数列,首项为$\frac{1}{3-1}$=$\frac{1}{2}$,公差为-1,
∴$\frac{1}{{a}_{n}-1}$=$\frac{1}{2}-(n-1)$=$\frac{3-2n}{2}$,
解得an=$\frac{2n-5}{2n-3}$.
点评 本题考查了递推式的应用、等差数列的通项公式,考查了变形能力、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0] | B. | [-1,3] | C. | [3,5] | D. | [5,7] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 高效 | 非高效 | 统计 | |
| 新课堂模式 | 60 | 30 | 90 |
| 传统课堂模式 | 40 | 50 | 90 |
| 统计 | 100 | 80 | 180 |
| P(K2≧K0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.897 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}\overrightarrow{OA}+\frac{3}{4}\overrightarrow{OB}$ | B. | $\frac{3}{4}\overrightarrow{OA}+\frac{1}{4}\overrightarrow{OB}$ | C. | $\frac{3}{4}\overrightarrow{OA}-\frac{1}{4}\overrightarrow{OB}$ | D. | $\frac{5}{4}\overrightarrow{OA}-\frac{1}{4}\overrightarrow{OB}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com