科目:高中数学 来源: 题型:
设数列
前
项和为![]()
,关于数列
有下列命题:
(1)若
则
既是
等差数列又是等比数列;
(2)若
,则
为等差数列;
(3)若
为等比数列,则
成等比数列;
(4)若
则
是等比数列;
其中正确的命题是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
解: (1)由已知得
,令
,得
,
要取得极值,方程
必须有解,
所以△
,即
, 此时方程
的根为
,
,
所以![]()
当
时,
| x | (-∞,x1) | x 1 | (x1,x2) | x2 | (x2,+∞) |
| f’(x) | + | 0 | - | 0 | + |
| f (x) | 增函数 |
| 减函数 | 极小值 | 增函数 |
所以
在x 1, x2处分别取得极大值和极小值.
当
时,
| x | (-∞,x2) | x 2 | (x2,x1) | x1 | (x1,+∞) |
| f’(x) | - | 0 | + | 0 | - |
| f (x) | 减函数 | 极小值 | 增函数 | 极大值 | 减函数 |
所以
在x 1, x2处分别取得极大值和极小值.
综上,当
满足
时,
取得极值.
(2)要使
在区间
上单调递增,需使
在
上恒成立.![]()
即
恒成立, 所以![]()
设
,
,
令
得
或
(舍去),
当
时,
,当
时
,
单调增函数;
当
时
,
单调减函数,
所以当
时,
取得最大,最大值为
.
所以![]()
当
时,
,此时
在区间
恒成立,所以
在区间
上单调递增,当
时
最大,最大值为
,所以![]()
综上,当
时,
; 当
时, ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
在数列
中,
,
,前
项和
满足
.
(1)求
(用
表示);
(2)求证:数列
是等比数列;
(3)若
,现按如下方法构造项数为
的有穷数列
:当
时,
;当
时,
,记数列
的前
项和
,试问:
是否能取整数?若能,请求出
的取值集合;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com