精英家教网 > 高中数学 > 题目详情
8.盒子里装有大小质量完全相同的2个红球,3个黑球,从盒中随机抽取两球,颜色不同的概率为$\frac{3}{5}$.

分析 先利用列举法求出基本事件总数,再利用列举法求出从盒中随机抽取两球,颜色不同的基本事件个数,由此能求出从盒中随机抽取两球,颜色不同的概率.

解答 解:设红球编号为A1,A2,黑球编号为B1,B2,B3
随机抽取两球的情况有:
(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),
(A2,B3),(B1,B2),(B1,B3),(B2,B3),共10种,
满足条件的有:
(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共6种,
所以从盒中随机抽取两球,颜色不同的概率:$P=\frac{6}{10}=\frac{3}{5}$.
故答案为:$\frac{3}{5}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设复数z=1+i,i是虚数单位,则$\frac{2}{z}$+($\overline{z}$)2=(  )
A.1-3iB.1-iC.-1-iD.-1+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知角θ的始边与x轴的非负半轴重合,终边在y=$\frac{1}{2}$x上,则tan2θ=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|-1≤x≤1},B={x|x2-2x≤0},则A∩B=(  )
A.{x|-1≤x≤2}B.{x|-1≤x≤0}C.{x|1≤x≤2}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如果一个函数f(x)在定义域D中满足:①存在x1,x2∈D,且x1≠x2,使得f(x1)=f(x2);②任意x1,x2∈D,f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{f({x}_{1})+f({x}_{2})}{2}$,则f(x)可以是(  )
A.f(x)=log2xB.f(x)=-x2+2xC.f(x)=2|x|D.f(x)=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.有7名游客,其中4名外国游客,3名中国游客组团到蓟县盘山游玩,上山缆车每辆最多乘4人.
(I)7人计划分乘A、B两辆缆车先后上山,为了交流方便每辆缆车中各有两名外国游客,则有多少种分配方案;
(II)由于游客较多只有-辆空闲缆车,7人中随机选取4人乘车,其余3人爬山,求出乘缆车的4人中中国游客人数ξ的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义R上的函敦f(x)满足:对?x∈R均有f(x)+f′(x)>0,则对正实数a必有(  )
A.f(a)>eaf(0)B.f(a)<eaf(0)C.f(a)<$\frac{f(0)}{{e}^{a}}$D.f(a)>$\frac{f(0)}{{e}^{a}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求最值
(1)求f(x)=sin(2x-$\frac{π}{3}$)的最大值,以及取最大值时的x.
(2)求f(x)=-2cos(2x-$\frac{π}{3}$)的最大值,以及取最大值时的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+△x,-2+△y),则$\frac{△y}{△x}$等于(  )
A.4B.4△xC.4+2△xD.4+2(△x)2

查看答案和解析>>

同步练习册答案