精英家教网 > 高中数学 > 题目详情
精英家教网过椭圆
x2
16
+
y2
4
=1
内一点M(1,1)的弦AB.
(1)若点M恰为弦AB的中点,求直线AB的方程;
(2)求过点M的弦的中点的轨迹方程.
分析:本题考查的知识点是直线的一般式方程及动点轨迹方程的求法,(1)由于弦AB过点M(1,1),故我们可设出直线AB的点斜式方程,联立直线与圆的方程后,根据韦达定理(根与系数的关系),我们结合点M恰为弦AB的中点,可得到一个关于斜率k的方程,解方程求出k值后,代入整理即可得到直线AB的方程.(2)设AB弦的中点为P,则由A,B,M,P四点共线,易得他们确定直线的斜率相等,由此可构造一个关于x,y的关系式,整理后即可得到过点M的弦的中点的轨迹方程.
解答:解:(1)设直线AB的斜率为k,则AB的方程可设为y-1=k(x-1).
y-1=k(x-1)
x2
16
+
y2
4
=1
得x2+4(kx+1-k)2=16
得(1+4k2)x2+8k(1-k)x+4(1-k2)-16=0
设A(x1y1),B(x2y2),则x1+x2=
8k(k-1)
1+4k2

而M(1,1)是AB中点,则
x1+x2
2
=1

综上,得
8k(k-1)
1+4k2
=2,解得k=-
1
4

直线AB的方程为y-1=-
1
4
(x-1),即x+4y-5=0

(2)设弦AB的中点为P(x,y)
∵A,B,M,P四点共线,
∴kAB=kMP
即(-
1
4
)•
x1+x2
y1+y2
=
y-1
x-1
,而x1+x2=2x,y1+y2=2y

(-
1
4
)
2x
2y
=
y-1
x-1
,整理,得轨迹方程为x2+4y2-x-4y=0
点评:在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件,用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知圆G:(x-2)2+y2=r2是椭圆
x216
+y2=1
的内接△ABC的内切圆,其中A为椭圆的左顶点,
(1)求圆G的半径r;
(2)过点M(0,1)作圆G的两条切线交椭圆于E,F两点,证明:直线EF与圆G相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

在O为坐标原点的直角坐标系中,点A(4,-3)为△OAB的直角顶点.已知|
AB
|=2|
OA
|
且点B的纵坐标大于零.
(1)求圆x2-6x+y2+2y=0关于直线OB对称的圆的方程;
(2)设直线l平行于直线AB且过点(0,a),问是否存在实数a,使得椭圆
x2
16
+y2=1
上有两个不同的点关于直线l对称,若不存在,请说明理由;若存在,请求出实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

现给出下列命题:
①若p,q是两个命题,则“p∧q为真”是“p∨q为真”的必要不充分条件;
②若椭圆
x2
16
+
y2
25
=1的两个焦点为F1,F2,且弦AB过点F1,则△ABF2的周长为16,
③过点(0,2)与抛物线y2=-5x仅有一个公共点的直线有3条;
④导数为0的点一定是函数的极值点.
其中不是真命题的序号是
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
16
+
y2
4
=1
上一点P作圆x2+y2=2的两条切线,切点为A,B,过A,B的直线与两坐标轴的交点为M,N,则△MON的面积的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在以O为坐标原点的直角坐标系中,
OA
AB
,点A(4,-3),B点在第一象限且到x轴的距离为5.
(1) 求向量
AB
的坐标及OB所在的直线方程;
(2) 求圆(x-3)2+(y+1)2=10关于直线OB对称的圆的方程;
(3) 设直线l
AB
为方向向量且过(0,a)点,问是否存在实数a,使得椭圆
x2
16
+y2=1上有两个不同的点关于直线l对称.若不存在,请说明理由; 存在请求出实数a的取值范围.

查看答案和解析>>

同步练习册答案