精英家教网 > 高中数学 > 题目详情
13.两相关变量满足如下关系:
x1015202530
Y1 0031 0051 0101 0111 014
两变量回归直线方程为(  )
A.$\stackrel{∧}{y}$=0.56$\stackrel{∧}{x}$+997.4B.$\stackrel{∧}{y}$=0.63 $\stackrel{∧}{x}$-231.2
C.$\stackrel{∧}{y}$=50.2 $\stackrel{∧}{x}$+501.4D.$\stackrel{∧}{y}$=60.4$\stackrel{∧}{x}$+400.7

分析 把已知数据代入计算公式,验证即可.

解答 解:由题意可得$\overline{x}$=$\frac{15}{\;}$(10+15+20+25+30)=20,
$\overline{y}$=$\frac{1}{5}$(1003+1005+1010+1011+1014)=1008.6,
代入验证,可得A符合.
故选A.

点评 本题考查线性回归方程,记住公式并准确运算是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若集合A={x|x2+x-2<0},集合$B=\left\{{x|\frac{1}{x^2}>1}\right\}$,则A∩B=(  )
A.(-1,2)B.(-∞,-1)∪(1,+∞)C.(-1,1)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知某个几何体的正视图、侧视图、俯视图均为右图的形状,根据图中标出的尺寸(图中大正方形边长为2a),可得这个几何体的体积是(  )
A.$\frac{20}{3}{a^3}$B.7a3C.$2\sqrt{2}{a^3}$D.5a3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数图象与x轴均有交点,其中不能用二分法求图中函数零点的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某几何体的三视图如图所示,且该几何体的体积为2,则正视图的面积=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,已知曲线C上任意一点到点$M(0,\frac{1}{2})$的距离与到直线y=-$\frac{1}{2}$的距离相等.
(Ⅰ)求曲线C的方程;
(Ⅱ)设A1(x1,0),A2(x2,0)是x轴上的两点x1+x2≠0,x1x2≠0,过点A1,A2分别作x轴的垂线,与曲线C分别交于点A1′,A2′,直线A1′A2′与x轴交于点A3(x3,0),这样就称x1,x2确定了x3.同样,可由x2,x3确定了x4.现已知x1=6,x2=2,求x4的值.
(Ⅲ)在曲线C上有A、B两点,且$\overrightarrow{OA}•\overrightarrow{OB}$=0,过原点做直线AB的垂线与直线AB交于M,写出点M的轨迹方程(不要求写出计算过程).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设F1,F2分别是椭圆:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过F1倾斜角为45°的直线l与该椭圆相交于P,Q两点,且|PQ|=$\frac{4}{3}$a.则该椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-(a+2)x+alnx(a>0).
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)若a=4,y=f(x)的图象与直线y=m有三个不同交点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列说法中错误的是①④(填序号)
①命题“?x1,x2∈M,x1≠x2,有[f(x1)-f(x2)](x2-x1)>0”的否定是“?x1,x2∉M,x1≠x2,有[f(x1)-f(x2)](x2-x1)≤0”;
②已知a>0,b>0,a+b=1,则$\frac{2}{a}$+$\frac{3}{b}$的最小值为5+2$\sqrt{6}$;
③设x,y∈R,命题“若xy=0,则x2+y2=0”的否命题是真命题;
④已知p:x2+2x-3>0,q:$\frac{1}{3-x}$>1,若命题(¬q)∧p为真命题,则x的取值范围是(-∞,-3)∪(1,2)∪[3,+∞).

查看答案和解析>>

同步练习册答案