分析 (1)根据|2x-a|+a≤6,得a-6≤2x-a≤6-a,解出x的范围,求出a的范围即可;
(2)f(x)+g(x)≥3等价于|1-a|+a≥3,通过讨论a的范围,确定a的范围即可.
解答 解:(1)由g(x)≤5⇒|2x-1|≤5,得-2≤x≤3,
又f(x)≤6⇒|2x-a|+a≤6,
得a-6≤2x-a≤6-a,
故a-3≤x≤3,a-3≤-2,则a≤1;
故a的最大值是1;
(2)当x∈R时,
f(x)+g(x)
=|2x-a|+a|+|1-2x|
≥|2x-a+1-2x|+a
=|1-a|+a,
当x=$\frac{1}{2}$时“=”成立,
故x∈R时,f(x)+g(x)≥3等价于|1-a|+a≥3①,
a≤1时,①等价于1-a+a≥3,无解,
a>1时,①等价于a-1+a≥3,解得:a≥2,
故a的范围是[2,+∞).
点评 本题考查了函数的单调性、最值问题,考查绝对值的意义,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)的最小正周期为$\frac{π}{2}$ | |
| B. | 函数f(x)的图象关于y轴对称 | |
| C. | 点$(\frac{π}{6},0)$为函数f(x)图象的一个对称中心 | |
| D. | 函数f(x)的最大值为$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{21}-\frac{y^2}{9}=1$ | B. | $\frac{x^2}{9}-\frac{y^2}{21}=1$ | C. | $\frac{x^2}{3}-\frac{y^2}{9}=1$ | D. | $\frac{x^2}{9}-\frac{y^2}{3}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2)(3) | B. | (1)(2)(3) | C. | (2)(4) | D. | (2)(3)(4) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com