精英家教网 > 高中数学 > 题目详情
在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:

(1)设表示在这块地上种植1季此作物的利润,求的分布列;
(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.
(1)分布列见解析;(2).

试题分析:(1)设表示事件“作物产量为300”,表示事件“作物市场价格为6元
由题设得4000,2000,800,结合概率公式计算出对应的概率,得出分布列;
(2)设表示事件“第季利润不少于2000元”,由题意知:相互独立,由(1)知
,3季利润均不少于2000元的概率为:
,3季中有2季利润不少于2000元的概率为:
,根据互斥事件概率的加法公式得:这3季中至少有2季的利润不少于2000元的概率为:
试题解析:(1)设表示事件“作物产量为300”,表示事件“作物市场价格为6元
由题设知:
因为利润=产量市场价格-成本
所以所以可能的取值为


,
,
,
所以的分布列为

4000
2000
800

0.3
0.5
0.2
(2)设表示事件“第季利润不少于2000元”
由题意知:相互独立,由(1)知

3季利润均不少于2000元的概率为:

3季中有2季利润不少于2000元的概率为:

所以,这3季中至少有2季的利润不少于2000元的概率为:
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

同时抛掷4枚均匀的硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为.
(1)求抛掷4枚硬币,恰好2枚正面向上,2枚反面向上的概率;
(2)求的数学期望和方差.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到火车站的人进行调查,调查结果如下:
所用时间(分钟)
10~20
20~30
30~40
40~50
50~60
选择L1的人数
6
12
18
12
12
选择L2的人数
0
4
16
16
4

(1)试估计40分钟内不能         赶到火车站的概率;
(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;
(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽量大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的 路径.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

袋中共有10个大小相同的编号为1,2,3的球,其中1号球有1个,2号球有m个,3号球有n个.从袋中依次摸出2个球,已知在第一次摸出3号球的前提下,再摸出一个2号球的概率是
(1)求m,n的值;
(2)从袋中任意摸出2个球,设得到小球的编号数之和为ξ,求随机变量ξ的分布列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

从分别写有0,1,2,3,4的五张卡片中取出一张卡片,记下数字后放回,再从中取出一张卡片.则两次取出的卡片上的数字之和恰好等于4的概率是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
 
文艺节目
新闻节目
总计
20至40岁
40
18
58
大于40岁
15
27
42
总计
55
45
100
 
(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?
(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?
(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).
(1)求选出的3名同学是来自互不相同学院的概率;
(2)设为选出的3名同学中女同学的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某校要用三辆校车从新校区把教师接到老校区,已知从新校区到老校区有两条公路,校车走公路①堵车的概率为,不堵车的概率为;校车走公路②堵车的概率为,不堵车的概率为.若甲、乙两辆校车走公路①,丙校车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.
(1)若三辆校车中恰有一辆校车被堵的概率为,求走公路②堵车的概率;
(2)在(1)的条件下,求三辆校车中被堵车辆的个数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某单位有车牌尾号为2的汽车A和尾号为6的汽车B,两车分属于两个独立业务部门.对一段时间内两辆汽车的用车记录进行统计,在非限行日,A车日出车频率0.6,B车日出车频率0.5.该地区汽车限行规定如下:
车尾号
0和5
1和6
2和7
3和8
4和9
限行日
星期一
星期二
星期三
星期四
星期五
 
现将汽车日出车频率理解为日出车概率,且A,B两车出车相互独立.
(1)求该单位在星期一恰好出车一台的概率;
(2)设X表示该单位在星期一与星期二两天的出车台数之和,求X的分布列及其数学期望E(X).

查看答案和解析>>

同步练习册答案