精英家教网 > 高中数学 > 题目详情
12.若f(x)=-$\frac{1}{2}$x2+bln(x+2)在(-2,+∞)上是减函数,则b的取值范围是(  )
A.(-∞,-1]B.(-∞,-1)C.(-∞,0]D.(-∞,0)

分析 先对函数进行求导,根据导函数小于0时原函数单调递减即可得到答案.

解答 解:由题意可知f′(x)=-x+$\frac{b}{x+2}$<0,在x∈(-2,+∞)上恒成立,
即b<x(x+2)在x∈(-2,+∞)上恒成立,
由于y=x(x+2)=(x+1)2-1≥-1,
所以b≤-1,
故选:A.

点评 本题主要考查导数的正负和原函数的增减性的问题.即导数大于0时原函数单调递增,当导数小于0时原函数单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图所示,点E、F分别为棱长为2$\sqrt{2}$的正方体ABCD-A1B1C1D1的棱AB,C1D1的中点,点P在EF上,过点P作直线l,使得l⊥EF,且l∥平面ACD1,直线l与正方体的表面相交于M、N两点,当点P由E运动到点F时,记EP=x,△EMN的面积为f(x),则y=f(x)的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{x+2y≥3}\\{2x+y≤3}\end{array}\right.$,则y-x的取值范围为[0,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线x+2y+3=0将圆(x-a)2+(y+5)2=3平分,则a=(  )
A.13B.7C.-13D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.(x-y)9的展开式中,系数最大项的系数是(  )
A.84B.126C.210D.252

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.周立波是海派清口创始人和《壹周•立波秀》节目的主持人,他的点评视角独特,语言幽默犀利,给观众留下了深刻的印象.某机构为了了解观众对《壹周•立波秀》节目的喜爱程度,随机调查了观看了该节目的140名观众,得到如下的列联表:(单位:名)
总计
喜爱4060100
不喜爱202040
总计6080140
(Ⅰ)从这60名男观众中按对《壹周•立波秀》节目是否喜爱采取分层抽样,抽取一个容量为6的样本,问样本中喜爱与不喜爱的观众各有多少名?
(Ⅱ)根据以上列联表,问能否在犯错误的概率不超过0.025的前提下认为观众性别与喜爱《壹周•立波秀》节目有关.(精确到0.001)
(Ⅲ)从(Ⅰ)中的6名男性观众中随机选取两名作跟踪调查,求选到的两名观众都喜爱《壹周•立波秀》节目的概率.
p(k2≥k00.100.050.0250.0100.005
k02.7053.8415.0246.6357.879
附:临界值表参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是一个算法流程图,则输出的x的值是(  )
A.59B.33C.13D.151

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=2x+1,x∈R且f(x)可表示为一个偶函数g(x)与一个奇函数h(x)的和,设h(x)=t,p(t)=g(2x)+2mh(x)+m2-m+1,m∈R.
(1)求P(t)的解析式;
(2)若p(t)≥m2-m+1对于x∈[1,2]恒成立,求m的取值范围;
(3)当P(P(t))=0无实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:?x∈R,x>sin x,则(  )
A.非p:?x∈R,x<sin xB.非p:?x∈R,x≤sin x
C.非p:?x∈R,x≤sin xD.非p:?x∈R,x<sin x

查看答案和解析>>

同步练习册答案