精英家教网 > 高中数学 > 题目详情

设F1和F2为双曲线的两个焦点,点P在双曲线上且满足∠F1PF2=90°,则△F1PF2的面积是(  )

A.1 B. C.2 D.

 

A

【解析】

试题分析:设|PF1|=x,|PF2|=y,根据根据双曲线性质可知x﹣y的值,再根据∠F1PF2=90°,求得x2+y2的值,进而根据2xy=x2+y2﹣(x﹣y)2求得xy,进而可求得∴△F1PF2的面积

【解析】
设|PF1|=x,|PF2|=y,(x>y)

根据双曲线性质可知x﹣y=4,

∵∠F1PF2=90°,

∴x2+y2=20

∴2xy=x2+y2﹣(x﹣y)2=4

∴xy=2

∴△F1PF2的面积为xy=1

故选A

练习册系列答案
相关习题

科目:高中数学 来源:[同步]2014年苏教版选修1-2 3.2复数的四则运算练习卷(解析版) 题型:选择题

复数2i(1+i)2=( )

A.﹣4 B.4 C.﹣4i D.4i

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年苏教版选修1-1 3.2导数的运算练习卷(解析版) 题型:解答题

已知抛物线y=x2,求过点(﹣,﹣2)且与抛物线相切的直线方程.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年苏教版选修1-1 2.5圆锥曲线与方程练习卷(解析版) 题型:解答题

已知椭圆的两焦点为F1(0,﹣1)、F2(0,1),直线y=4是椭圆的一条准线.

(1)求椭圆方程;

(2)设点P在椭圆上,且|PF1|﹣|PF2|=1,求tan∠F1PF2的值.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年苏教版选修1-1 2.5圆锥曲线与方程练习卷(解析版) 题型:选择题

若双曲线x2﹣y2=1的右支上一点P(a,b)到直线y=x的距离为,则a+b的值为(  )

A.﹣ B. C.± D.±2

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年苏教版选修1-1 2.4抛物线练习卷(解析版) 题型:解答题

已知抛物线x2=4y,点P是抛物线上的动点,点A的坐标为(12,6),求点P到点A的距离与到x轴的距离之和的最小值.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年苏教版选修1-1 2.4抛物线练习卷(解析版) 题型:填空题

抛物线y=12x2的焦点到准线的距离为 .

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年苏教版选修1-1 2.1圆锥曲线练习卷(解析版) 题型:选择题

设AB为过抛物线y2=2px(p>0)的焦点的弦,则|AB|的最小值为( )

A. B.P C.2P D.无法确定

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年苏教版必修四 1.1任意角、弧度制练习卷(解析版) 题型:解答题

写出终边落在如图所示直线上的角的集合.

 

 

查看答案和解析>>

同步练习册答案