分析 (1)推导出BE⊥D1E,D1E⊥C1E,由此能证明D1E⊥平面BEC1.
(2)取AB中点G,则由△ABD为等边三角形知DG⊥AB,从而DG⊥DC,以DC,DG,DD1为坐标轴,建立空间直角坐标系,利用向量法能求出平面ADF和平面BEC1所成锐角的余弦值.
解答 证明:(1)由已知该四棱柱为直四棱柱,且△BCD为等边三角,BE⊥CD
所以BE⊥平面CDD1C1,而D1E⊆平面CDD1C1,故BE⊥D1E![]()
因为△C1D1E的三边长分别为${C_1}E={D_1}E=\sqrt{2},{C_1}{D_1}=2$,故△C1D1E为等腰直角三角形
所以D1E⊥C1E,结合D1E⊥BE知:D1E⊥平面BEC1
解:(2)取AB中点G,则由△ABD为等边三角形
知DG⊥AB,从而DG⊥DC
以DC,DG,DD1为坐标轴,建立如图所示的坐标系
此时$D(0,0,0),A(-1,\sqrt{3},0),{D_1}(0,0,1),E(1,0,0)$,${A_1}(-1,\sqrt{3},1),{B_1}(1,\sqrt{3},1)$,设$F(λ,\sqrt{3},1)$
由上面的讨论知平面BEC1的法向量为$\overrightarrow{{D_1}E}=(1,0,-1)$
由于AF?平面BEC1,故AF∥平面BEC1$?\overrightarrow{AF}⊥\overrightarrow{{D_1}E}?\overrightarrow{AF}•\overrightarrow{{D_1}E}=0$
故(λ+1,0,1)•(1,0,-1)=(λ+1)-1=0⇒λ=0,故$F(0,\sqrt{3},1)$
设平面ADF的法向量为$\overrightarrow a=(x,y,z)$,$\overrightarrow{DA}=(-1,\sqrt{3},0),\overrightarrow{DF}=(0,\sqrt{3},1)$
由$\left\{{\begin{array}{l}{\overrightarrow{DA}•\overrightarrow a=0}\\{\overrightarrow{DF}•\overrightarrow a=0}\end{array}}\right.$知$\left\{{\begin{array}{l}{-x+\sqrt{3}y=0}\\{\sqrt{3}y+z=0}\end{array}}\right.$,取$x=\sqrt{3},y=1,z=-\sqrt{3}$,故$\overrightarrow a=(\sqrt{3},1,-\sqrt{3})$
设平面ADF和平面BEC1所成锐角为θ,则$cosθ=\frac{{\overrightarrow a•\overrightarrow{{D_1}E}}}{{|{\overrightarrow a}|•|{\overrightarrow{{D_1}E}}|}}=\frac{{2\sqrt{3}}}{{\sqrt{7}•\sqrt{2}}}=\frac{{\sqrt{42}}}{7}$
即平面ADF和平面BEC1所成锐角的余弦值为$\frac{{\sqrt{42}}}{7}$.
点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | {x|x≤4} | B. | {x|x≤4,且x≠2} | C. | {x|1≤x≤4,且x≠2} | D. | {x|x≥4} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4 或-2 | B. | -4 或 2 | C. | -2 或 4 | D. | -2 或 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com