精英家教网 > 高中数学 > 题目详情
设函数f(x)在其定义域D上的导函数为f′(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈D都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a).给出下列四个函数:
①f(x)=x3-x2+x+1;
②f(x)=lnx+
③f(x)=(x2-4x+5)ex
④f(x)=
其中具有性质P(2)的函数是    .(写出所有满足条件的函数的序号)
【答案】分析:因为a=2,所以先求出函数f(x)的导函数f′(x),然后将其配凑成f′(x)=h(x)(x2-2x+1)这种形式,分别求出h(x),然后确定h(x)是否满足对任意的x∈D都有h(x)>0.
解答:解:①f'(x)=x2-2x+1,若f′(x)=h(x)(x2-2x+1),即x2-2x+1=h(x)(x2-2x+1),
    所以h(x)=1>0,满足条件,所以①具有性质P(2).
②函数f(x)=lnx+的定义域为(0,+∞).
所以,当x∈(0,+∞)时,h(x)>0,所以②具有性质P(2).
③f'(x)=(2x-4)ex+(x2-4x+5)ex=(x2-2x+1)ex,所以h(x)=ex,因为h(x)>0,所以③具有性质P(2).
,若
,因为h(1)=0,所以不满足对任意的x∈D都有h(x)>0,所以④不具有性质P(2).
故答案为:①②③.
点评:本题的考点是导数的运算以及通过条件求h(x),本题的关键是通过关系式确定函数h(x)的表达式,然后判断条件是否成立.运算量较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
1x+b
(a,b∈Z)
,曲线y=f(x)在点(2,f(2))处的切线方程为y=3.
(Ⅰ)求f(x)的解析式:
(Ⅱ)证明:函数y=f(x)的图象是一个中心对称图形,并求其对称中心;
(Ⅲ)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+
1x+b
(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3.
(Ⅰ)求f(x)的解析式,并判断函数y=f(x)的图象是否为中心对称图形?若是,请求其对称中心;否则说明理由.
(II)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值.
(III) 将函数y=f(x)的图象向左平移一个单位后与抛物线y=ax2(a为非0常数)的图象有几个交点?(说明理由)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省广州二中高二(下)期末数学试卷(文科)(解析版) 题型:解答题

设函数f(x)=ax+(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3.
(Ⅰ)求f(x)的解析式,并判断函数y=f(x)的图象是否为中心对称图形?若是,请求其对称中心;否则说明理由.
(II)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值.
(III) 将函数y=f(x)的图象向左平移一个单位后与抛物线y=ax2(a为非0常数)的图象有几个交点?(说明理由)

查看答案和解析>>

科目:高中数学 来源:2011年四川省南充市高考数学一模试卷(理科)(解析版) 题型:解答题

设函数,曲线y=f(x)在点(2,f(2))处的切线方程为y=3.
(Ⅰ)求f(x)的解析式:
(Ⅱ)证明:函数y=f(x)的图象是一个中心对称图形,并求其对称中心;
(Ⅲ)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+(a, b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3.

(Ⅰ)求f(x)的解析式:

(Ⅱ)证明:函数y=f(x)的图像是一个中心对称图形,并求其对称中心;

(Ⅲ)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值.

查看答案和解析>>

同步练习册答案