精英家教网 > 高中数学 > 题目详情
13.向量$\overrightarrow{a}$=(0,1,0)与$\overrightarrow{b}$=(-3,2,$\sqrt{3}$)的夹角的余弦值为$\frac{1}{2}$.

分析 直接利用空间向量的数量积求解即可.

解答 解:向量$\overrightarrow{a}$=(0,1,0)与$\overrightarrow{b}$=(-3,2,$\sqrt{3}$)的夹角为θ,
cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{\left|\overrightarrow{a}\right|\left|\overrightarrow{b}\right|}$=$\frac{2}{1•\sqrt{9+4+3}}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查空间向量的数量积的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某学校要举办体育节,同时确定在高一年级一班学生中选拔仪仗队员.该班首先侧量了本班学生的身高,并把所得数据按照区间:[150,160),[160,170),[170,180),[180,190](单位:cm)分组,分别得到了男生和女生的频率分布直方图,如图所示,其中男生(图1)在区间[160,170)内的人数是6人,女生(图2)在区间[160,170)内的人数是15人.

(1)该班共有多少学生?
(2)要从身高180cm以上(含180)的男生中选拔两名旗手,从身高170cm以上(含170)的女生中选拔两名旗手,求男生甲(身高在180cm以上)和女生乙(身高在170cm以上)同时当选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若平面向量$\overrightarrow{a}$与平面向量$\overrightarrow{b}$的夹角等于$\frac{π}{3}$,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,则2$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+2$\overrightarrow{b}$的夹角的余弦值为-$\frac{1}{26}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题错误的是(  )
A.若a,b∈R+,则$\sqrt{ab}$≥$\frac{2ab}{a+b}$B.$\frac{b}{a}$+$\frac{a}{b}$≥2成立,当且仅当a,b∈R+
C.若a,b∈R+,则$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$≥$\frac{2}{ab}$D.若a,b∈R+,则$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$≥$\frac{a+b}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的坐标,求$\overrightarrow{a}•\overrightarrow{b}$.
(1)$\overrightarrow{a}$=(4,-5),$\overrightarrow{b}$=(-4,3);
(2)$\overrightarrow{a}$=(3,5),$\overrightarrow{b}$=(-5,3);
(3)$\overrightarrow{a}$=(8,5),$\overrightarrow{b}$=(-7,-8);
(4)$\overrightarrow{a}$=(12,-7),$\overrightarrow{b}$=(4,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列变量之间的关系是函数关系的是(  )
A.光照时间和果树亩产量B.圆柱体积和它的底面直径
C.自由下落的物体的质量与落地时间D.球的表面积和它的半径

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)的定义域是[0,2],则函数g(x)=$\frac{f(x+1)}{x-1}$的定义域是[-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.判断下列函数的奇偶性.
(1)f(x)=$\sqrt{x-1}$+$\sqrt{1-x}$;
(2)f(x)=|x|+$\sqrt{{x}^{2}}$;
(3)f(x)=$\frac{\sqrt{1-{x}^{2}}}{|x+2|-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.函数y=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sinxcosx+1,x∈R
(1)当函数y取得最大值时,求自变量的取值集合;
(2)该函数的图象可由y=sinx的图象经过怎样的平移和伸缩变换得到?
(3)试用“五点”法作出函数在长度为一个周期的闭区间上的简图.

查看答案和解析>>

同步练习册答案