分析 利用换元法先求出函数的解析式即可得到结论.
解答 解:设t=$\frac{1}{x}$,则x=$\frac{1}{t}$,则t>0,
则f(t)=$\frac{1}{t}$+$\sqrt{1+(\frac{1}{t})^{2}}$=$\frac{1}{t}$+$\frac{\sqrt{1+{t}^{2}}}{t}$,
则f(x+1)=$\frac{1}{x+1}$+$\frac{\sqrt{1+(1+x)^{2}}}{1+x}$=$\frac{1+\sqrt{{x}^{2}+2x+2}}{x+1}$,
故答案为:$\frac{1+\sqrt{{x}^{2}+2x+2}}{x+1}$
点评 本题主要考查函数解析式的求解,利用换元法和代入法是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{100}{101}$ | B. | $\frac{99}{100}$ | C. | $\frac{98}{99}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}{a=2}\\{b=3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{a=-2}\\{b=-3}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{a=1}\\{b=-6}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{a=3}\\{b=2}\end{array}\right.$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com