精英家教网 > 高中数学 > 题目详情
17.已知x,y满足$\left\{\begin{array}{l}|{x-y}|≤2\\|{x+y}|≤1\end{array}\right.$,则z=2x-y的最大值为(  )
A.$\frac{3}{2}$B.$\frac{5}{2}$C.$\frac{7}{2}$D.$\frac{9}{2}$

分析 作出可行域,平移目标直线可得取最值时的条件,求交点代入目标函数即可.

解答 解:由$\left\{\begin{array}{l}|{x-y}|≤2\\|{x+y}|≤1\end{array}\right.$,则$\left\{\begin{array}{l}{-2≤x-y≤2}\\{-1≤x+y≤1}\end{array}\right.$,满足条件的可行域为,
当目标直线过直线x-y=2与直线x+y=1的交点A($\frac{3}{2}$,-$\frac{1}{2}$)时取最大值,
故最大值为z=2×$\frac{3}{2}$-(-$\frac{1}{2}$)=$\frac{7}{2}$
故答案为:$\frac{7}{2}$

点评 本题考查简单线性规划,准确作图是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.命题“到圆心的距离不等于半径的直线不是圆的切线”的逆否命题是圆的切线到圆心的距离等于半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l:(a+3)x+y-1=0,直线m:5x+(a-1)y+3-2a=0,若直线l∥m,则直线l与直线m之间的距离是(  )
A.$\frac{6}{5}$B.$\frac{{\sqrt{26}}}{26}$C.$\frac{{3\sqrt{2}}}{5}$D.$\frac{{3\sqrt{26}}}{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,其左顶点A在圆x2+y2=12上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l:x=my+3(m≠0)交椭圆C于M,N两点.
(i)若以弦MN为直径的圆过坐标原点O,求实数m的值;
(ii)设点N关于x轴的对称点为N1(点N1与点M不重合),且直线N1M与x轴交于点P,试问△PMN的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知集合$M=\left\{{x|\frac{2}{x}<1}\right\},N=\left\{{y|y=lg({x^2}+1)}\right\}$,则N∩∁RM=[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.扇形的半径为3,中心角为120°,把这个扇形折成一个圆锥,则这个圆锥的体积为(  )
A.πB.$\frac{2}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$\frac{{2\sqrt{2}}}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.2015年12月26日,南昌地铁一号线开通运营,甲、乙、丙、丁四位同学决定乘坐地铁游览八一广场、滕王阁、秋水广场.每人只能去一个地方,八一广场一定要有人去.则不同的游览方案有65种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果实数x,y满足条件$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y-2≥0}\\{2x-y-2≤0}\end{array}}\right.$,则$z=\frac{x}{y}$的最大值是(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.图中的三个正方形方块中,着色正方形的个数依次构成一个数列的前3项,这个数列的第5项是(  )
A.2187B.4681C.729D.3125

查看答案和解析>>

同步练习册答案