精英家教网 > 高中数学 > 题目详情
5.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,其左顶点A在圆x2+y2=12上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l:x=my+3(m≠0)交椭圆C于M,N两点.
(i)若以弦MN为直径的圆过坐标原点O,求实数m的值;
(ii)设点N关于x轴的对称点为N1(点N1与点M不重合),且直线N1M与x轴交于点P,试问△PMN的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

分析 (Ⅰ)∵椭圆C的左顶点在圆O:x2+y2=12上,解得a,又$e=\frac{c}{a}=\frac{{\sqrt{3}}}{2}$,b2=a2-c2,解出即可得出椭圆C的方程.
(Ⅱ)(i)设M(x1,y1),N(x2,y2).直线l与椭圆C方程联立化为(m2+4)y2+6my-3=0,由OM⊥ON,可得$\overrightarrow{OM}•\overrightarrow{ON}=0$,即x1x2+y1y2=0,把根与系数的关系代入解出m,即可得出.
(ii)由题意,N1(x2,-y2),可得直线NM的方程为$y-{y_1}=\frac{{{y_1}+{y_2}}}{{{x_1}-{x_2}}}(x-{x_1})$,令y=0,可得点P的坐标为(4,0). 利用△PMN的面积为S=$\frac{1}{2}$|PF|•|y1-y2|,化简了基本不等式的性质即可得出.

解答 解:(Ⅰ)∵椭圆C的左顶点在圆O:x2+y2=12上,∴$a=2\sqrt{3}$.
又离心率为$\frac{{\sqrt{3}}}{2}$,∴$e=\frac{c}{a}=\frac{{\sqrt{3}}}{2}$,解得c=3,
∴b2=a2-c2=3,
∴椭圆C的方程为$\frac{x^2}{12}+\frac{y^2}{3}=1$.
(Ⅱ)(i)设M(x1,y1),N(x2,y2).
直线l与椭圆C方程联立$\left\{\begin{array}{l}x=my+3\\ \frac{x^2}{12}+\frac{y^2}{3}=1\end{array}\right.$
化简并整理得(m2+4)y2+6my-3=0,
∴${y_1}+{y_2}=-\frac{6m}{{{m^2}+4}}$,${y_1}{y_2}=-\frac{3}{{{m^2}+4}}$,
∴${x_1}+{x_2}=m({y_1}+{y_2})+6=-\frac{{6{m^2}}}{{{m^2}+4}}+6=\frac{24}{{{m^2}+4}}$,${x_1}{x_2}={m^2}{y_1}{y_2}+3m({y_1}+{y_2})+9=-\frac{{3{m^2}}}{{{m^2}+4}}-\frac{{18{m^2}}}{{{m^2}+4}}+9=\frac{{36-12{m^2}}}{{{m^2}+4}}$.
∵OM⊥ON,∴$\overrightarrow{OM}•\overrightarrow{ON}=0$,即x1x2+y1y2=0,
代入,得$\frac{{36-12{m^2}}}{{{m^2}+4}}-\frac{3}{{{m^2}+4}}=0$,解得${m^2}=\frac{11}{4}$,∴$m=±\frac{{\sqrt{11}}}{2}$.
(ii)由题意,N1(x2,-y2),∴直线NM的方程为$y-{y_1}=\frac{{{y_1}+{y_2}}}{{{x_1}-{x_2}}}(x-{x_1})$,
令y=0,得$x={x_1}-\frac{{{y_1}({x_1}-{x_2})}}{{{y_1}+{y_2}}}=\frac{{{x_1}{y_2}+{x_2}{y_1}}}{{{y_1}+{y_2}}}=\frac{{(m{y_1}+3){y_2}+(m{y_2}+3){y_1}}}{{{y_1}+{y_2}}}$=$\frac{{\frac{-6m}{{{m^2}+4}}}}{{\frac{-6m}{{{m^2}+4}}}}+3=4$,
∴点P的坐标为(4,0). 
△PMN的面积为${S_{△PMN}}=\frac{1}{2}|PF||{y_1}-{y_2}|=\frac{1}{2}×1×\sqrt{{{({y_1}+{y_2})}^2}-4{y_1}{y_2}}$=$\frac{1}{2}\sqrt{{{(\frac{-6m}{{{m^2}+4}})}^2}-4(\frac{-3}{{{m^2}+4}})}=2\sqrt{3}\sqrt{\frac{{{m^2}+1}}{{{{({m^2}+4)}^2}}}}$=$2\sqrt{3}\sqrt{\frac{1}{{{m^2}+1+\frac{9}{{{m^2}+4}}+6}}}$≤$2\sqrt{3}\sqrt{\frac{1}{{2\sqrt{({m^2}+1)(\frac{9}{{{m^2}+1}}})+6}}}$=$2\sqrt{3}\sqrt{\frac{1}{6+6}}=1$,
当且仅当${m^2}+1=\frac{9}{{{m^2}+1}}$,即$m=±\sqrt{2}$时等号成立,
故△PMN的面积存在最大值,最大值为1.

点评 本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交弦长问题、一元二次方程的根与系数的关系、基本不等式的性质、向量垂直与数量积的关系、圆的性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知{an}为等差数列,其前n项和为Sn,且a1=21,a1+a2+a3=57.
(1)求数列{an}的通项公式;
(2)求Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题中正确的是(  )
A.若p∨q为真命题,则p∧q为真命题
B.“m=n”是“方程mx2+ny2=1表示圆”的充要条件
C.命题:“?x0∈R,x${\;}_{0}^{2}$+2x0+a≤0”的否定是:“?x∈R,x2+2x+a>0”
D.若直线x-ay=0与直线x+ay=0互相垂直,则a=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在空间直角坐标系中,点P(1,-2,3)关于坐标平面xoy的对称点为P′,则点P与P′间的距离|PP′|为(  )
A.$\sqrt{14}$B.6C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在多面体PQR-ABCD中,底面ABCD是平行四边形,AB=2AD=2,∠DAB=60°,PD⊥面ABCD,PD=1,PQ∥DA,PR∥DC,且$PQ=\frac{1}{2}DA,PR=\frac{1}{2}DC$.
(1)求证:平面PQB⊥平面PBD; 
(2)求三棱锥P-BQR的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.4位外省游客来江西旅游,若每人只能从庐山、井冈山、龙虎山中选择一处游览,则每个景点都有人去游览的概率为(  )
A.$\frac{8}{9}$B.$\frac{9}{16}$C.$\frac{3}{4}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x,y满足$\left\{\begin{array}{l}|{x-y}|≤2\\|{x+y}|≤1\end{array}\right.$,则z=2x-y的最大值为(  )
A.$\frac{3}{2}$B.$\frac{5}{2}$C.$\frac{7}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某同学在研究性学习中,收集到某制药厂2015年前5月甲胶囊生产产量(单位:万盒)的数据如下表所示:
月份x12345
生产产量y(万盒)44566
(1)该同学为了求出y关于x的线性回归方程$\hat y=\hat bx+\hat a$,根据表中数据已经正确计算出$\hat b$=0.6,试求出$\hat a$的值,并估计该厂六月份生产的甲胶囊的数量;
(2)若某药店现有该制药厂二月份生产的甲胶囊2盒和三月份生产的甲胶囊3盒,小红同学从中随机购买了2盒,后经了解发现该制药厂二月份生产的所有甲胶囊均存在质量问题.记“小红同学所购买的2盒甲胶囊中存在质量问题的盒数为1”为事件A,求事件A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.△ABC的内角A,B,C的对边分别为a,b,c,满足$\frac{a-b+c}{b}$≤$\frac{c}{a+b-c}$,则角A的最大值是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.不存在

查看答案和解析>>

同步练习册答案