精英家教网 > 高中数学 > 题目详情
13.在空间直角坐标系中,点P(1,-2,3)关于坐标平面xoy的对称点为P′,则点P与P′间的距离|PP′|为(  )
A.$\sqrt{14}$B.6C.4D.2

分析 利用对称的性质先求出P′(1,-2,-3),再由两点间距离公式求解.

解答 解:∵在空间直角坐标系中,点P(1,-2,3)关于坐标平面xoy的对称点为P′,
∴P′(1,-2,-3),
∴点P与P′间的距离|PP′|=$\sqrt{(1-1)^{2}+(-2+2)^{2}+(3+3)^{2}}$=6.
故选:B.

点评 本题考查两点间距离公式的求法,是基础题,解题时要认真审题,注意两点间距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.计算:($\frac{1}{27}$)${\;}^{-\frac{1}{3}}$+(log316)•(log2$\frac{1}{9}$)=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的离心率为$\frac{\sqrt{10}}{2}$,且过点(2,$\sqrt{3}$),则双曲线C的标准方程为(  )
A.$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{3}=1$B.$\frac{{x}^{2}}{3}-\frac{{y}^{2}}{9}=1$C.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{6}=1$D.x2-y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若p是q的充分不必要条件,则下列判断正确的是(  )
A.¬p是q的必要不充分条件B.¬q是p的必要不充分条件
C.¬p是¬q的必要不充分条件D.¬q是¬p的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l:(a+3)x+y-1=0,直线m:5x+(a-1)y+3-2a=0,若直线l∥m,则直线l与直线m之间的距离是(  )
A.$\frac{6}{5}$B.$\frac{{\sqrt{26}}}{26}$C.$\frac{{3\sqrt{2}}}{5}$D.$\frac{{3\sqrt{26}}}{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={y|y=x2},B={y|y=2-x,x>1},则A∩B=(  )
A.$\left\{{y|0<y<\frac{1}{2}}\right\}$B.{y|0<y<1}C.$\left\{{y|\frac{1}{2}<y<1}\right\}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,其左顶点A在圆x2+y2=12上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l:x=my+3(m≠0)交椭圆C于M,N两点.
(i)若以弦MN为直径的圆过坐标原点O,求实数m的值;
(ii)设点N关于x轴的对称点为N1(点N1与点M不重合),且直线N1M与x轴交于点P,试问△PMN的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.扇形的半径为3,中心角为120°,把这个扇形折成一个圆锥,则这个圆锥的体积为(  )
A.πB.$\frac{2}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$\frac{{2\sqrt{2}}}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=2x2-lnx在其定义域内的一个子区间(k-1,k+1)内是单调函数,则实数k的取值范围是(  )
A.$[{1,\frac{3}{2}})$B.$[{\frac{3}{2},+∞})$C.[1,2)D.$[{\frac{3}{2},2})$

查看答案和解析>>

同步练习册答案