精英家教网 > 高中数学 > 题目详情
9.2015年12月26日,南昌地铁一号线开通运营,甲、乙、丙、丁四位同学决定乘坐地铁游览八一广场、滕王阁、秋水广场.每人只能去一个地方,八一广场一定要有人去.则不同的游览方案有65种.

分析 利用间接法,求出没有限制的方案,再排除八一广场没有同学去的方案,问题得以解决.

解答 解:没有限制的方案,每一个同学都有3种方案,故有34=81种,
若八一广场没有同学去,则每一个同学都有2种方案,故有24=16种,
故每人只能去一个地方,八一广场一定要有人去,则不同的游览方案有81-16=65种,
故答案为:65.

点评 本题考查了分步计数原理,关键是利用间接法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届河北沧州市高三9月联考数学(理)试卷(解析版) 题型:选择题

设复数为虚数单位),的共轭复数为,则在复平面内对应的点在( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在多面体PQR-ABCD中,底面ABCD是平行四边形,AB=2AD=2,∠DAB=60°,PD⊥面ABCD,PD=1,PQ∥DA,PR∥DC,且$PQ=\frac{1}{2}DA,PR=\frac{1}{2}DC$.
(1)求证:平面PQB⊥平面PBD; 
(2)求三棱锥P-BQR的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x,y满足$\left\{\begin{array}{l}|{x-y}|≤2\\|{x+y}|≤1\end{array}\right.$,则z=2x-y的最大值为(  )
A.$\frac{3}{2}$B.$\frac{5}{2}$C.$\frac{7}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和为Sn(n∈N*),且满足an+Sn=2n+1.
(1)求数列{an}的通项公式;
(2)求证:$\frac{1}{{2{a_1}{a_2}}}+\frac{1}{{{2^2}{a_2}{a_3}}}+…+\frac{1}{{{2^n}{a_n}{a_{n+1}}}}<\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某同学在研究性学习中,收集到某制药厂2015年前5月甲胶囊生产产量(单位:万盒)的数据如下表所示:
月份x12345
生产产量y(万盒)44566
(1)该同学为了求出y关于x的线性回归方程$\hat y=\hat bx+\hat a$,根据表中数据已经正确计算出$\hat b$=0.6,试求出$\hat a$的值,并估计该厂六月份生产的甲胶囊的数量;
(2)若某药店现有该制药厂二月份生产的甲胶囊2盒和三月份生产的甲胶囊3盒,小红同学从中随机购买了2盒,后经了解发现该制药厂二月份生产的所有甲胶囊均存在质量问题.记“小红同学所购买的2盒甲胶囊中存在质量问题的盒数为1”为事件A,求事件A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.f(x)=ex(2x-1)-ax+a(a∈R),e为自然对数的底数.
(1)当a=1时,求函数f(x)的单调区间;
(2)若存在实数x∈(1,+∞),x满足f(x)<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=ax-4,g(x)═loga|x|(a>0,a≠1)且$f(\frac{1}{2})•g(\frac{1}{2})<0$,则函数f(x),g(x)在同一坐标系中的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a、b、c分别为双曲线的实半轴长、虚半轴长、半焦距,且方程ax2+bx+c=0无实根,则双曲线离心率的取值范围是(  )
A.1<e<$\sqrt{5}$-2B.1<e<2C.1<e<3D.1<e<2+$\sqrt{5}$

查看答案和解析>>

同步练习册答案