分析 (1)再写一式,两式相减得2an-an-1=2,整理${a_n}=\frac{1}{2}{a_{n-1}}+1$,即${a_n}-2=\frac{1}{2}({a_{n-1}}-2)$,数列{an-2}是首项为${a_1}-2=-\frac{1}{2}$,公比为$\frac{1}{2}$的等比数列,即可求数列{an}的通项公式;
(2)利用裂项法,即可证明结论.
解答 (1)解:∵an+Sn=2n+1,令n=1,得2a1=3,${a_1}=\frac{3}{2}$. (2分)
∵an+Sn=2n+1,∴an-1+Sn-1=2(n-1)+1,(n≥2,n∈N*)
两式相减,得2an-an-1=2,整理${a_n}=\frac{1}{2}{a_{n-1}}+1$(4分)${a_n}-2=\frac{1}{2}({a_{n-1}}-2)$,(n≥2)
∴数列{an-2}是首项为${a_1}-2=-\frac{1}{2}$,公比为$\frac{1}{2}$的等比数列
∴${a_n}=2-\frac{1}{2^n}$. (6分)
(2)证明:∵$\frac{1}{{{2^n}{a_n}{a_{n+1}}}}=\frac{1}{{{2^n}•\frac{{{2^{n+1}}-1}}{2^n}•\frac{{{2^{n+2}}-1}}{{{2^{n+1}}}}}}=\frac{{{2^{n+1}}}}{{({2^{n+1}}-1)({2^{n+2}}-1)}}=\frac{1}{{{2^{n+1}}-1}}-\frac{1}{{{2^{n+2}}-1}}$(8分)
∴$\frac{1}{{2{a_1}{a_2}}}+\frac{1}{{{2^2}{a_2}{a_3}}}+…+\frac{1}{{{2^n}{a_n}{a_{n+1}}}}$=$(\frac{1}{{{2^2}-1}}-\frac{1}{{{2^3}-1}})+(\frac{1}{{{2^3}-1}}-\frac{1}{{{2^4}-1}})+…+(\frac{1}{{{2^{n+1}}-1}}-\frac{1}{{{2^{n+2}}-1}})$=$\frac{1}{3}-\frac{1}{{{2^{n+2}}-1}}<\frac{1}{3}$. (12分)
点评 本题考查等比数列的判断,考查数列的通项与求和,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com