精英家教网 > 高中数学 > 题目详情

【题目】等比数列的前项和为,已知对任意的,点均在函数 均为常数)的图象上.
(1)求的值;

(2)当时,记,证明:对任意的,不等式成立.

【答案】(1);(2)见解析.

【解析】试题分析: (1)由已知中因为对任意的,点,均在函数均为常数的图象上,根据数列中的关系,我们易得到一个关于的方程,再由数列为对等比数列即可得到的值;(2)将代入,我们可以得到数列的通项公式,再由,我们可给数列的通项公式,进而可将不等式进行简化,然后利用数学归纳法对其进行证明.

试题解析:(1)由题意, ,当时, ,所以

,所以时, 是以为公比的等比数列,

,即,解得.

(2)当时,由(1)知,因此

所以不等式为

①当时,左式,右式,左式>右式,所以结论成立

②假设时结论成立,即

则当时,

要证当时结论成立,只需证成立,

只需证: 成立,显然成立,

∴当时, 成立,综合①②可知不等式成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】曲线上任意一点M满足, 其中F (-F (抛物线的焦点是直线yx-1与x轴的交点, 顶点为原点O.

(I)求 的标准方程;

(II)请问是否存在直线l满足条件:① 过的焦点;② 与交于不同两点 且满足?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平潭国际“花式风筝冲浪”集训队,在平潭龙凤头海滨浴场进行集训,海滨区域的某个观测点观测到该处水深(米)是随着一天的时间呈周期性变化,某天各时刻的水深数据的近似值如下表:

0

3

6

9

12

15

18

21

24

1.5

2.4

1.5

0.6

1.4

2.4

1.6

0.6

1.5

(Ⅰ)根据表中近似数据画出散点图(坐标系在答题卷中).观察散点图,从

, ②,③

中选择一个合适的函数模型,并求出该拟合模型的函数解析式;(Ⅱ)为保证队员安全,规定在一天中的5~18时且水深不低于1.05米的时候进行训练,根据(Ⅰ) 中的选择的函数解析式,试问:这一天可以安排什么时间段组织训练,才能确保集训队员的安全。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a=(12),b=(-2,n),ab的夹角是45°.

(1) 求b

(2) cb同向,且aca垂直,求向量c的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆过点,离心率为,左、右焦点分别为,过的直线交椭圆于两点.

求椭圆C的方程;

的面积为时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形均为菱形

1求证:平面

2求证:平面

3求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为,山区边界曲线为,计划修建的公路为,如图所示,的两个端点,测得点的距离分别为5千米40千米,点的距离分别为20千米2.5千米,以所在的直线分别为轴,建立平面直角坐标系,假设曲线符合函数其中为常数模型

(1)的值;

(2)设公路与曲线相切于点,的横坐标为.

请写出公路长度的函数解析式,并写出其定义域;

为何值时,公路的长度最短?求出最短长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体是棱上的一点

1求证:平面

2求证:

3是棱的中点在棱上是否存在点使得平面若存在求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:极坐标与参数方程

在平面直角坐标系中,曲线的参数方程为为参数).

1)求曲线的普通方程;

2)经过点(平面直角坐标系中点)作直线交曲线两点,若恰好为线段的三等分点,求直线的斜率.

查看答案和解析>>

同步练习册答案