精英家教网 > 高中数学 > 题目详情
设集合B={a1,a2,…,an},J={b1,b2,…,bm},定义集合B⊕J={(a,b)|a=a1+a2+…+an,b=b1+b2+…+bm},已知B={51,21,28},J={89,70,52},则B⊕J的子集为(  )
A、(100,211)
B、{(100,211)}
C、∅,(100,211)
D、∅,{(100,211)}
考点:子集与真子集
专题:集合
分析:根据B⊕J={(a,b)|a=a1+a2+…+an,b=b1+b2+…+bm},B={51,21,28},J={89,70,52},求出B⊕J,进而可得B⊕J的子集.
解答: 解:∵B⊕J={(a,b)|a=a1+a2+…+an,b=b1+b2+…+bm},
B={51,21,28},J={89,70,52},
∴B⊕J={(100,211)},
B⊕J的子集为∅,{(100,211)},
故选:D
点评:本题考查的知识点是子集与真子集,其中根据已知求出B⊕J是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
1
|x+1|
,(x≠-1)
1,(x=-1)
,若关于x的方程f2(x)+bf(x)+c=0有且仅有三个不同的实数根x1、x2、x3,且x1<x2<x3,则x12+2x22+3x32等于(  )
A、6
B、13
C、
2b2+2
b2
D、
3c2+2
c2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2,过曲线y=f(x)上一点P(-1,b)且平行于直线3x+y=0的切线方程为(  )
A、3x+y-1=0
B、3x+y+1=0
C、3x-y+1=0
D、3x+y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an},满足an>0,2a1+a2=a3,则公比q=(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a1+a2+a3=2,a2+a3+a4=4,a5+a6+a7=(  )
A、64B、32C、16D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=5,anan+1=2n,则
a1
a3
=(  )
A、
1
2
B、2
C、
5
2
D、
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在各项都为正数的等比数列{an}中,公比q=2,前三项和为21,则a3+a4+a5=(  )
A、33B、72C、84D、189

查看答案和解析>>

科目:高中数学 来源: 题型:

写出命题P的逆命题,否命题,逆否命题,并判断其真假.命题Q的否定并判断其真假
P:矩形的对角线相等且互相平分;
Q:正偶数不是质数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+ax2+4x+b,其中a、b∈R且a≠0.
(Ⅰ)求证:函数f(x)在点(0,f(0))处的切线与f(x)总有两个不同的公共点;
(Ⅱ)若函数f(x)在区间(-1,1)上有且仅有一个极值点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案