精英家教网 > 高中数学 > 题目详情
7.函数y=3sin(2x-$\frac{π}{6}$)+2的单调递减区间是[$\frac{π}{3}$+kπ,$\frac{5}{6}$π+kπ],k∈Z.

分析 由条件利用正弦函数的单调性,求得函数y=3sin(2x-$\frac{π}{6}$)+2的单调递减区间.

解答 解:对于函数y=3sin(2x-$\frac{π}{6}$)+2,
令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{π}{3}$≤x≤kπ+$\frac{5π}{6}$,
可得函数的减区间为[$\frac{π}{3}$+kπ,$\frac{5}{6}$π+kπ],k∈Z,
故答案为:[$\frac{π}{3}$+kπ,$\frac{5}{6}$π+kπ],k∈Z.

点评 本题主要考查正弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\frac{x}{x+a}$的图象关于点(1,1)对称,g(x)=lg(10x+1)+bx是偶函数,则a+b=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点A(-1,1)、B(1,2)、C(-2,1)、D(3,4),则向量$\overrightarrow{AD}$在$\overrightarrow{CB}$方向上的投影为(  )
A.$-\frac{{3\sqrt{5}}}{2}$B.$-\frac{{3\sqrt{15}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{3\sqrt{10}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆P:(x-1)2+y2=8,圆心为C的动圆过点M(-1,0)且与圆P相切.
(1)求动圆圆心的轨迹方程;
(2)若直线y=kx+m与圆心为C的轨迹相交于A,B两点,且kOA•kOB=-$\frac{1}{2}$,试判断△AOB的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.用秦九韶算法求多项式f(x)=6x6+4x4+3x3+x当x=2的值得过程中,V3的值为59.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知抛物线y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线在第一象限的交点为$P({x_0},2\sqrt{2})$,则x0等于(  )
A.2B.$2+\sqrt{2}$C.$3+\sqrt{2}$D.$3\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知全集为实数R,M={x|x+3>0},则∁RM为(  )
A.{x|x>-3}B.{x|x≥-3}C.{x|x<-3}D.{x|x≤-3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,直三棱柱ABC-A1B1C1的棱长均相等,点F为棱BC的中点,点E在棱CC1上,且EF⊥AB1
(1)若CC1=λCE,求λ的值;
(2)求二面角F-AE-C1所成平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点M(1,$\frac{\sqrt{3}}{2}$),F1,F2是椭圆C的两个焦点,|F1F2|=2$\sqrt{3}$,P是椭圆C上的一个动点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点P在第一象限,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$≤$\frac{1}{4}$,求点P的横坐标的取值范围;
(Ⅲ)是否存在过定点N(0,2)的直线l交椭圆C交于不同的两点A,B,使∠AOB=90°(其中O为坐标原点)?若存在,求出直线l的斜率k;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案