分析 (1)连结B1F,证明AF⊥平面BB1C1C得出AF⊥EF,结合EF⊥AB1得出EF⊥平面AB1F,于是EF⊥B1F,利用△B1BF∽△FCE得出CE=$\frac{1}{4}$CC1;
(2)以F为原点建立坐标系,求出平面AEF和平面AEC1的法向量,则两法向量的夹角或补交为所求二面角.
解答
解:(1)连接B1F,
由直棱柱的性质知,底面ABC⊥侧面BB1C1C,
∵F为BC的中点,
∴AF⊥BC,
∴AF⊥侧面BB1C1C,∴AF⊥EF.
又EF⊥AB1,
∴EF⊥平面AB1F,∴EF⊥B1F.
又∠B1BF=∠FCE=90°,
∴△B1BF∽△FCE,
∴$\frac{B{B}_{1}}{FC}=\frac{BF}{CE}$=2,
∴CE=$\frac{1}{2}$CF=$\frac{1}{4}$CC1,
∴λ=4.
(2)设G为B1C1的中点,以F为原点,分别以FB,AF,FG所在直线为坐标轴,建立空间直角坐标系F-xyz,
设三棱柱ABC-A1B1C1的棱长为1,
则F(0,0,0),A(0,-$\frac{\sqrt{3}}{2}$,0),E(-$\frac{1}{2}$,0,$\frac{1}{4}$),C1(-$\frac{1}{2}$,0,1),
∴$\overrightarrow{FA}$=(0,-$\frac{\sqrt{3}}{2}$,0),$\overrightarrow{FE}$=(-$\frac{1}{2}$,0,$\frac{1}{4}$),
设平面AEF的法向量为$\overrightarrow{{n}_{1}}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{FA}=0}\\{\overrightarrow{{n}_{1}}•\overrightarrow{FE}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{-\frac{\sqrt{3}}{2}y=0}\\{-\frac{1}{2}x+\frac{1}{4}z=0}\end{array}\right.$,令x=1得$\overrightarrow{{n}_{1}}$=(1,0,2).
同理可得平面AEC1的一个法向量为$\overrightarrow{{n}_{2}}$=($\sqrt{3}$,1,0),
∴cos<$\overrightarrow{{n}_{1}}$,$\overrightarrow{{n}_{2}}$>=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}}{|\overrightarrow{{n}_{1}}||\overrightarrow{{n}_{2}}|}$=$\frac{\sqrt{3}}{\sqrt{5}•2}$=$\frac{\sqrt{15}}{10}$,
∵二面角F-AE-C1为钝二面角,
∴二面角F-AE-C1所成平面角的余弦值为-$\frac{\sqrt{15}}{10}$.
点评 本题考查了线面垂直的判定与性质,二面角的计算,空间向量在立体几何中的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,-8,-4) | B. | (1,8,4) | C. | (-1,-8,-4) | D. | (1,-8,-4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 13 | B. | 14 | C. | 15 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com