精英家教网 > 高中数学 > 题目详情
8.(1)求值(tan10°-$\sqrt{3}$)•sin40°    
(2)化简$\frac{2co{s}^{4}x-2co{s}^{2}x+\frac{1}{2}}{2tan(\frac{π}{4}-x)si{n}^{2}(\frac{π}{4}+x)}$.

分析 (1)根据同角的三角函数的关系和两角差的正弦公式以及二倍角公式化简计算即可,
(2)根据二倍角公式和同角的三角形函数的公式以及诱导公式化简即可.

解答 解:(1)原式=$({\frac{{sin10°-\sqrt{3}cos10°}}{cos10°}})$•sin40°
=$\frac{2(sin10°cos60°-cos10°sin60°)sin40°}{cos10°}$
=$\frac{-2sin50°sin40°}{cos10°}$=$\frac{-2sin40°cos40°}{cos10°}$=$\frac{-sin80°}{cos10°}$=-1.
(2)∵2cos4x-2cos2x+$\frac{1}{2}$=2[(cos2x-$\frac{1}{2}$)2-$\frac{1}{4}$]+$\frac{1}{2}$
=2(cos2x-$\frac{1}{2}$)2=2($\frac{co2x+1}{2}$-$\frac{1}{2}$)2=$\frac{1}{2}$cos22x,
2tan($\frac{π}{4}$-x)sin2($\frac{π}{4}$+x)=2tan($\frac{π}{4}$-x)cos2($\frac{π}{4}$-x)
=2sin($\frac{π}{4}$-x)cos($\frac{π}{4}$-x)=sin($\frac{π}{2}$-2x)=cos2x
∴原式=$\frac{1}{2}$cos2x.

点评 本题考查了同角的三角函数的关系和两角差的正弦公式以及二倍角公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知点A(-1,1)、B(1,2)、C(-2,1)、D(3,4),则向量$\overrightarrow{AD}$在$\overrightarrow{CB}$方向上的投影为(  )
A.$-\frac{{3\sqrt{5}}}{2}$B.$-\frac{{3\sqrt{15}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{3\sqrt{10}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知全集为实数R,M={x|x+3>0},则∁RM为(  )
A.{x|x>-3}B.{x|x≥-3}C.{x|x<-3}D.{x|x≤-3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,直三棱柱ABC-A1B1C1的棱长均相等,点F为棱BC的中点,点E在棱CC1上,且EF⊥AB1
(1)若CC1=λCE,求λ的值;
(2)求二面角F-AE-C1所成平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设α,β,γ是三个互不重合的平面,m,n是两条不重合的直线,下列命题中正确的序号是④;
①若α⊥β,β⊥γ,则α⊥γ; 
②若m∥α,n∥β,α⊥β,则m⊥n;
③若α⊥β,m⊥α,则m∥β;
④若α∥β,m?β,m∥α,则m∥β.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=a|x+1|在区间(-1,+∞)上为增函数,则g(x)=$\frac{sinx}{lo{g}_{a}(x+2)}$的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2+ln(x+1).
(Ⅰ)当a=-$\frac{1}{4}$时,函数g(x)=f(x)-k在[0,2]内有两个零点,求实数k的取值范围;
(Ⅱ)当x∈[0,+∞)时,不等式f(x)≤x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点M(1,$\frac{\sqrt{3}}{2}$),F1,F2是椭圆C的两个焦点,|F1F2|=2$\sqrt{3}$,P是椭圆C上的一个动点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点P在第一象限,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$≤$\frac{1}{4}$,求点P的横坐标的取值范围;
(Ⅲ)是否存在过定点N(0,2)的直线l交椭圆C交于不同的两点A,B,使∠AOB=90°(其中O为坐标原点)?若存在,求出直线l的斜率k;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x},x>0}\\{4-{2}^{-x},x≤0}\end{array}\right.$,若关于x的方程f(2x2+x)=a恰有6个不同的实数根,则实数a的取值范围是[2,3].

查看答案和解析>>

同步练习册答案