精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=a|x+1|在区间(-1,+∞)上为增函数,则g(x)=$\frac{sinx}{lo{g}_{a}(x+2)}$的图象大致为(  )
A.B.
C.D.

分析 先判断a与1的大小关系,在根据g(x)在(-1,0)和(0,π)上的函数值的符号进行判断.

解答 解:∵当x>-1时,f(x)=ax+1是增函数,∴a>1.
当x∈(0,π)时,sinx>0,loga(x+2)>0,∴g(x)>0,排除A、D;
当x∈(-1,0)时,sinx<0,loga(x+2)>0,∴g(x)<0,排除C.
故选B.

点评 本题考查了函数的图象判断,主要从定义域,值域,特殊点,对称性等方面进行判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知角α的终边上有一点P(1,3),则$\frac{{sin(π-α)-sin(\frac{π}{2}+α)}}{2cos(α-2π)}$的值为(  )
A.1B.$-\frac{4}{5}$C.-1D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数$f(x)=tan(\frac{x}{2}-2)$的最小正周期为2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.记等差数列{an}的前n项和为Sn.若${a_{m-1}}+{a_{m+1}}-{a_m}^2=0(m≥2,m∈{N^*})$,且S2m-1=58,则m=(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)求值(tan10°-$\sqrt{3}$)•sin40°    
(2)化简$\frac{2co{s}^{4}x-2co{s}^{2}x+\frac{1}{2}}{2tan(\frac{π}{4}-x)si{n}^{2}(\frac{π}{4}+x)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定积分${∫}_{\frac{π}{4}}^{\frac{9π}{4}}$$\sqrt{2}$cos(2x+$\frac{π}{4}$)dx的值为(  )
A.1B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=eax-$\frac{1}{a}$lnx(a>0)存在零点,则实数a的取值范围是(0,$\frac{1}{e}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{{2b-\sqrt{3}c}}{{\sqrt{3}a}}=\frac{cosC}{cosA}$.
(I)求角A的值;
(Ⅱ)若角B=$\frac{π}{6}$,BC边上的中线AM=$\sqrt{7}$,求边b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设变量x,y满足约束条件$\left\{{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}}\right.$,则z=log2(2x-y)的最大值为(  )
A.log23B.0C.2D.1

查看答案和解析>>

同步练习册答案