精英家教网 > 高中数学 > 题目详情
2.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{{2b-\sqrt{3}c}}{{\sqrt{3}a}}=\frac{cosC}{cosA}$.
(I)求角A的值;
(Ⅱ)若角B=$\frac{π}{6}$,BC边上的中线AM=$\sqrt{7}$,求边b.

分析 (I)利用正弦定理将边化角,根据和角公式化简解出cosA.
(Ⅱ)由已知可求a=b,C=$\frac{2π}{3}$,在△ACM中,由余弦定理可解得b的值.

解答 解:(I)在△ABC中,∵$\frac{{2b-\sqrt{3}c}}{{\sqrt{3}a}}=\frac{cosC}{cosA}$,
∴(2b-$\sqrt{3}$c)cosA=$\sqrt{3}$acosC,
∴2sinBcosA=$\sqrt{3}$sinAcosC+$\sqrt{3}$sinCcosA=$\sqrt{3}$sin(A+C)=$\sqrt{3}$sinB,
∴cosA=$\frac{\sqrt{3}}{2}$.
∴A=$\frac{π}{6}$.
(Ⅱ)∵A=B=$\frac{π}{6}$,
∴a=b,C=π-B-A=$\frac{2π}{3}$,
∵BC边上的中线AM=$\sqrt{7}$,
∴在△ACM中,由余弦定理可得:AM2=AC2+CM2-2AC•CM•cosC,即:7=b2+($\frac{1}{2}b$)2-2×b×$\frac{b}{2}$×cos$\frac{2π}{3}$,
∴整理解得:b=2.

点评 本题考查了正弦定理,两角和的正弦函数公式,三角形内角和定理,余弦定理在解三角形中的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知抛物线y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线在第一象限的交点为$P({x_0},2\sqrt{2})$,则x0等于(  )
A.2B.$2+\sqrt{2}$C.$3+\sqrt{2}$D.$3\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=a|x+1|在区间(-1,+∞)上为增函数,则g(x)=$\frac{sinx}{lo{g}_{a}(x+2)}$的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{16}x+\frac{1}{4}{a}^{2},x≥0}\\{{x}^{2}+({a}^{2}-4a+3)x+(3-a)^{2},x<0}\end{array}\right.$,若对任意非零实数x1,存在唯一实数x2(x1≠x2),使得f(x1)=f(x2)成立,则实数a的值为2或6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点M(1,$\frac{\sqrt{3}}{2}$),F1,F2是椭圆C的两个焦点,|F1F2|=2$\sqrt{3}$,P是椭圆C上的一个动点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点P在第一象限,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$≤$\frac{1}{4}$,求点P的横坐标的取值范围;
(Ⅲ)是否存在过定点N(0,2)的直线l交椭圆C交于不同的两点A,B,使∠AOB=90°(其中O为坐标原点)?若存在,求出直线l的斜率k;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分分别为F1,F2,|F1F2|=2$\sqrt{3}$,长轴长为4,P是椭圆C上任意一点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的取值范围;
(Ⅲ)设椭圆的左、右顶点分别为A,B,直线PA交直线l:x=4于点M,连接MB,直线MB与椭圆C的另一个交点为Q.试判断直线PQ是否过定点,若是,求出定点坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知定义在R上的奇函数f(x),满足对任意t∈R都有f(2+t)+f(t)=0,且x∈[0,1]时,f(x)=$\frac{ex}{{e}^{x}}$,若函数g(x)=f(x)-loga|x|在其定义域上有5个零点,则实数a的值为(  )
A.7或$\frac{1}{7}$B.5或$\frac{1}{5}$C.3或$\frac{1}{3}$D.e或$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知p:|x-3|≤2,q:x2-2mx+m2-1≤0,若¬p是¬q的充分而不必要条件,则实数m的取值范围是[2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a,b,c均为正数,且(a+c)(b+c)=2,则a+2b+3c的最小值为(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.4D.8

查看答案和解析>>

同步练习册答案