精英家教网 > 高中数学 > 题目详情
12.已知a,b,c均为正数,且(a+c)(b+c)=2,则a+2b+3c的最小值为(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.4D.8

分析 根据条件可得到a+2b+3c=(a+c)+2(b+c),而a+c>0,b+c>0,并且(a+c)(b+c)=2,这样根据基本不等式便可求出a+2b+3c的最小值.

解答 解:∵a,b,c>0,(a+c)(b+c)=2;
∴$a+2b+3c=(a+c)+2(b+c)≥2\sqrt{2}$$•\sqrt{(a+c)(b+c)}$=$2\sqrt{2}×\sqrt{2}=4$,当且仅当a+c=2(b+c)时取“=”;
∴a+2b+3c的最小值为4.
故选C.

点评 考查基本不等式求最值的方法,注意应用基本不等式所要具备的条件,及等号能否取到.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{{2b-\sqrt{3}c}}{{\sqrt{3}a}}=\frac{cosC}{cosA}$.
(I)求角A的值;
(Ⅱ)若角B=$\frac{π}{6}$,BC边上的中线AM=$\sqrt{7}$,求边b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设变量x,y满足约束条件$\left\{{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}}\right.$,则z=log2(2x-y)的最大值为(  )
A.log23B.0C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知随机变量X服从正态分布N(3,δ2),且P(x≤6)=0.9,则P(0<x<3)=(  )
A.0.4B.0.5C.0.6D.0.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.过点P(1,-3)作圆x2+y2+2y=0的两条切线,这两条切线分别与x轴交于A、B两点,则|AB|等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.定义在R上的函数f(x)满足f(-x)=-f(x),f(x-2)=f(x+2),且x∈=(-2,0)时,f(x)=2x+$\frac{1}{2}$,则f(2017)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某几何体的正视图和侧视图如图(1)所示,它的俯视图的直观图是△A′B′C′,如图(2)所示,其中O′A′=O′B′=2,O′C′=$\sqrt{3}$,则该几何体的外接球的表面积为$\frac{112π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.有4人排成一排照相,由于甲乙两人关系比较好,要求站在一起,则4人站法种数(  )
A.12B.16C.20D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.方程sinx=|lnx|根的个数2个.

查看答案和解析>>

同步练习册答案