精英家教网 > 高中数学 > 题目详情
1.有4人排成一排照相,由于甲乙两人关系比较好,要求站在一起,则4人站法种数(  )
A.12B.16C.20D.24

分析 相邻的问题利用捆绑法,先排相邻的,再和其它的全排,问题得以结解决.

解答 解:甲乙两同学相邻,把甲乙看作一个元素,和其它2个元素全排,则共有${A}_{2}^{2}{A}_{3}^{3}$=12不同的排法种法.
故选:B.

点评 本题主要考查了排列中的相邻问题,利用捆绑法是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知p:|x-3|≤2,q:x2-2mx+m2-1≤0,若¬p是¬q的充分而不必要条件,则实数m的取值范围是[2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a,b,c均为正数,且(a+c)(b+c)=2,则a+2b+3c的最小值为(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知正实数x,y满足xy=x+2y+6,则$\frac{1}{x}$+$\frac{1}{2y}$的最小值为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.关于x的一元二次方程x2-4x+a=0
(1)若此方程有两个实数根,求a的取值范围.
(2)若此方程有两正根,求a的取值范围.
(3)是否存在a的值使得此方程有两负根.
(4)是否存在a的值使得此方程有一正根,一负根.
(5)若此方程有两个实数根,一根比3大,一根比3小,求字母a的取值范围.
(6)若此方程有两个实数根,两根都比1大,求字母a的取值范围.
(7)若此方程有两个实数根,一根比3大,一根比1小,求字母a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C的极坐标方程是ρ=4sinθ,设直线l的参数方程是$\left\{\begin{array}{l}{x=t-1}\\{y=2t+1}\end{array}\right.$(t为参数).
(Ⅰ)将曲线C的极坐标方程转化为直角坐标方程;
(Ⅱ)设直线l与曲线C的交点是M,N,O为坐标原点,求△OMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,角A,B,C所对的边分别为a,b,c,若∠A=120°,c=3,a=7,则△ABC的面积S=$\frac{15\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=logax(a>0且a≠1)和函数g(x)=sin$\frac{π}{2}$x,若f(x)与g(x)的图象有且只有3个交点,则a的取值范围是($\frac{1}{7}$,$\frac{1}{3}$)∪(5,9).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x-2|
(Ⅰ)解不等式:f(x)+f(x+1)≤2;
(Ⅱ)若a<0,求证:f(ax)-f(2a)≥af(x).

查看答案和解析>>

同步练习册答案