精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=|x-2|
(Ⅰ)解不等式:f(x)+f(x+1)≤2;
(Ⅱ)若a<0,求证:f(ax)-f(2a)≥af(x).

分析 (I)由题意可得|x-1|+|x-2|≤2,对x讨论,分当x≤1时,当1<x≤2时,当x>2时,去掉绝对值,解不等式,求并集即可得到所求解集;
(II)由题意可证f(ax)-af(x)≥f(2a),运用绝对值不等式的性质,求得左边的最小值,即可得证.

解答 解:(I)由题意,得f(x)+f(x+1)=|x-1|+|x-2|,
因此只须解不等式|x-1|+|x-2|≤2,
当x≤1时,原不等式等价于-2x+3≤2,即$\frac{1}{2}$≤x≤1;
当1<x≤2时,原不等式等价于1≤2,即1<x≤2;
当x>2时,原不等式等价于2x-3≤2,即2<x≤$\frac{5}{2}$.
综上,原不等式的解集为{x|$\frac{1}{2}$$≤x≤\frac{5}{2}$}.
(II)证明:由题意得f(ax)-af(x)=|ax-2|-a|x-2|
=|ax-2|+|2a-ax|≥|ax-2+2a-ax|
=|2a-2|=f(2a).
所以f(ax)-f(2a)≥af(x)成立.

点评 本题考查绝对值不等式的解法,注意运用分类讨论的思想方法,考查不等式的证明,注意运用绝对值不等式的性质,考查运算能力和推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.有4人排成一排照相,由于甲乙两人关系比较好,要求站在一起,则4人站法种数(  )
A.12B.16C.20D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.方程sinx=|lnx|根的个数2个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若关于x的不等式acos2x+cosx≥-1恒成立,则实数a的取值范围是[$\frac{2-\sqrt{2}}{4}$,$\frac{2+\sqrt{2}}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设数列{$\frac{{a}_{n}}{n}$}是公差为d的等差数列,前n项和为Sn,若a3=1,a9=12,则S12=(  )
A.$\frac{1}{9}$B.$\frac{2}{3}$C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=($\frac{1}{2}$)|x|-sin|x|在区间[-π,π]上的零点个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某几何体的三视图如图所示,则该几何体的体积为(  )
A.B.$\frac{7π}{4}$C.$\frac{3π}{2}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若实数x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x+y≥0\\ x≤0\end{array}\right.$则z=3x+3y的最小值是(  )
A.0B.9C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5,那么a6的值为3.

查看答案和解析>>

同步练习册答案