精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{16}x+\frac{1}{4}{a}^{2},x≥0}\\{{x}^{2}+({a}^{2}-4a+3)x+(3-a)^{2},x<0}\end{array}\right.$,若对任意非零实数x1,存在唯一实数x2(x1≠x2),使得f(x1)=f(x2)成立,则实数a的值为2或6.

分析 由题意结合函数图象可将问题转化为关于a的方程(3-a)2=$\frac{1}{4}$a2,解得即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{\frac{1}{16}x+\frac{1}{4}{a}^{2},x≥0}\\{{x}^{2}+({a}^{2}-4a+3)x+(3-a)^{2},x<0}\end{array}\right.$,
∴当x=0时,f(x)=$\frac{1}{4}$a2
∵对任意的非零实数x1,存在唯一的实数x2(x2≠x1),使得f(x2)=f(x1)成立.
∴函数必须为连续函数,
∴(3-a)2=$\frac{1}{4}$a2
解得a=2或a=6,
故答案为:2或6.

点评 本题主要考查分段函数的应用,结合一元二次函数的性质是解决本题的关键.综合性较强,注意利用数形结合进行求解,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx+x2-3x.
(1)求f(x)的单调区间; 
(2)求函数f(x)的极大值和极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.记等差数列{an}的前n项和为Sn.若${a_{m-1}}+{a_{m+1}}-{a_m}^2=0(m≥2,m∈{N^*})$,且S2m-1=58,则m=(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定积分${∫}_{\frac{π}{4}}^{\frac{9π}{4}}$$\sqrt{2}$cos(2x+$\frac{π}{4}$)dx的值为(  )
A.1B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=eax-$\frac{1}{a}$lnx(a>0)存在零点,则实数a的取值范围是(0,$\frac{1}{e}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知三点A(0,2),B(-3,0),C(4,0),矩形EFGH的顶点E、H分别在△ABC的边AB、AC上,F、G都在边BC上,不管矩形EFGH如何变化,它的对角线EG、HF的交点P恒在一条定直线l上,那么直线l的方程是2x+y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{{2b-\sqrt{3}c}}{{\sqrt{3}a}}=\frac{cosC}{cosA}$.
(I)求角A的值;
(Ⅱ)若角B=$\frac{π}{6}$,BC边上的中线AM=$\sqrt{7}$,求边b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,平面内有三个向量$\overrightarrow{OA}$、$\overrightarrow{OB}$、$\overrightarrow{OC}$,其中$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为120°,$\overrightarrow{OA}$与$\overrightarrow{OC}$的夹角为30°,且|$\overrightarrow{OA}|=|\overrightarrow{OB}$|=1,|$\overrightarrow{OC}|=2\sqrt{3}$,若$\overrightarrow{OC}=x\overrightarrow{OA}+y\overrightarrow{OB}$(x,y∈R),则(x,y)=(4,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知随机变量X服从正态分布N(3,δ2),且P(x≤6)=0.9,则P(0<x<3)=(  )
A.0.4B.0.5C.0.6D.0.7

查看答案和解析>>

同步练习册答案