| A. | $\frac{1}{{2}^{n}}$ | B. | 2n+$\frac{1}{{2}^{n-1}}$ | C. | 2n-2+$\frac{1}{{2}^{n-1}}$ | D. | $\frac{n-1}{{2}^{n-1}}$ |
分析 运用等比数列的求和公式,化简通项,再由分组求和公式,结合等比数列的求和公式,计算即可得到.
解答 解:由1+$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n-1}}$=$\frac{1-(\frac{1}{2})^{n}}{1-\frac{1}{2}}$=2-2•($\frac{1}{2}$)n,
则Sn=(2+2+…+2)-2($\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n-1}}$+$\frac{1}{{2}^{n}}$)
=2n-2•$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=2n-2+$\frac{1}{{2}^{n-1}}$.
故选C.
点评 本题考查数列的求和方法:分组求和,同时考查等比数列的求和公式的运用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{a}$•$\overrightarrow{b}$=0⇒$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow{b}$=$\overrightarrow{0}$ | B. | $\overrightarrow{a}$∥$\overrightarrow{b}$⇒$\overrightarrow{a}$在$\overrightarrow{b}$上投影为|$\overrightarrow{a}$| | ||
| C. | $\overrightarrow{a}$⊥$\overrightarrow{b}$⇒$\overrightarrow{a}$•$\overrightarrow{b}$=($\overrightarrow{a}$•$\overrightarrow{b}$)2 | D. | $\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{b}$•$\overrightarrow{c}$⇒$\overrightarrow{a}$=$\overrightarrow{b}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com