精英家教网 > 高中数学 > 题目详情
8.已知函数y=sinx+cosx.
(1)求函数的单调区间;
(2)求函数的最值及x的值.

分析 (1)首先,化简函数解析式,然后,根据三角函数的图象求解;
(2)直接根据三角函数的最值性质求解即可.

解答 解:y=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),
∴函数y=$\sqrt{2}$sin(x+$\frac{π}{4}$),
(1)令-$\frac{π}{2}$+2kπ≤x+$\frac{π}{4}$≤$\frac{π}{2}$+2kπ,k∈Z
∴-$\frac{3π}{4}$+2kπ≤x≤$\frac{π}{4}$+2kπ,
∴该函数递增区间为:[-$\frac{3π}{4}$+2kπ,$\frac{π}{4}$+2kπ],(k∈Z),
令$\frac{π}{2}$+2kπ≤x+$\frac{π}{4}$≤$\frac{3π}{2}$+2kπ,k∈Z
∴$\frac{π}{4}$+2kπ≤x≤$\frac{5π}{4}$+2kπ,
∴该函数递减区间为:[$\frac{π}{4}$+2kπ,$\frac{5π}{4}$+2kπ],(k∈Z),
(2)x+$\frac{π}{4}$=-$\frac{π}{2}$+2kπ,
∴x=-$\frac{3π}{4}$+2kπ,此时函数取得最小值为-$\sqrt{2}$;
x+$\frac{π}{4}$=$\frac{π}{2}$+2kπ,k∈Z
∴x=$\frac{π}{4}$+2kπ,此时函数取得最大值为$\sqrt{2}$.

点评 本题重点考查了三角公式、三角函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.把正方形ABCD沿对角线BD折成直二面角A-BD-C,则下列四个结论
①AC⊥BD;②△ACD是等边三角形;③AB与平面CBD成60°角;④AB与CD所成角为45°,
其中正确的结论个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.不等式|$\frac{1}{4}$x+$\frac{2}{3}$|>$\frac{1}{2}$的解集是{x|x>-$\frac{2}{3}$,或 x<-$\frac{14}{3}$ }.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.计算:$\sqrt{9-4\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆过点A(5,4),离心率e=$\frac{3}{5}$,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.Sn=1+(1+$\frac{1}{2}$)+(1+$\frac{1}{2}$+$\frac{1}{4}$)+…(1+$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n-1}}$)等于(  )
A.$\frac{1}{{2}^{n}}$B.2n+$\frac{1}{{2}^{n-1}}$C.2n-2+$\frac{1}{{2}^{n-1}}$D.$\frac{n-1}{{2}^{n-1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如果抛物线f(x)=x2+bx+c与x轴交于两点(-1,0)和(3,0),则f(x)>0的解是(  )
A.(-1,3)B.[-1,3]C.(-∞,-1)∪(3,+∞)D.(-∞,-1]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若过原点的直线与圆x2+y2+2x+4y-3=0交于A,B两点,则AB的最小值是2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列说法错误的是(  )
A.在独立性检验中,K2的值越大,说明确定两个量有关系的把握越大
B.计算误差,测量误差都将影响到残差的大小
C.在回归分析中R2的值越大,说明拟合效果越好
D.球的体积与它的半径具有相关关系

查看答案和解析>>

同步练习册答案