分析 条件即2sin(x-$\frac{π}{6}$)=$\frac{3-m}{3+m}$,则|$\frac{3-m}{3+m}$|≤2,两边平方化简可得m2+10m+9≥0,由此求得m的范围.
解答 解:由于sinx-$\sqrt{3}$cosx=2sin(x-$\frac{π}{6}$)=$\frac{3-m}{3+m}$,则|$\frac{3-m}{3+m}$|≤2,两边平方可得$\frac{{m}^{2}-6m+9}{{m}^{2}+6m+9}$≤4,
∴m2+10m+9≥0,求得m≤-9 或m≥-1,
故答案为:(-∞,-9]∪[-1,+∞).
点评 本题主要考查正弦函数的值域,分式不等式的解法,体现了专化、分类讨论的数学思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0<x<1} | B. | {x|0<x≤1} | C. | {x|1<x<2} | D. | {x|2<x<3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{{e}_{1}}$=(0,0),$\overrightarrow{{e}_{2}}$=(-1,2) | B. | $\overrightarrow{{e}_{1}}$=(-1,3),$\overrightarrow{{e}_{2}}$=(2,-6) | ||
| C. | $\overrightarrow{{e}_{1}}$=(-1,2),$\overrightarrow{{e}_{2}}$=(3,-1) | D. | $\overrightarrow{{e}_{1}}$=(-$\frac{1}{2}$,1),$\overrightarrow{{e}_{2}}$=(1,-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | X=Y$\underset{?}{≠}$Z | B. | X$\underset{?}{≠}$Y=Z | C. | X$\underset{?}{≠}$Y$\underset{?}{≠}$Z | D. | X$\underset{?}{≠}$Z$\underset{?}{≠}$Y |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com