精英家教网 > 高中数学 > 题目详情
12.已知定义域为R的奇函数f(x)满足f(x+1)=f(3-x),当x∈(0,2]时,f(x)=-x2+4,则函数y=f(x)-a(a∈R)在区间[-4,8]上的零点个数最多时,所有零点之和为14.

分析 利用函数的奇偶性以及函数的对称性,画出函数的图象,判断函数y=f(x)-a(a∈R)在区间[-4,8]上的零点个数最多时的位置,求解零点之和.

解答 解:定义域为R的奇函数f(x)满足f(x+1)=f(3-x),
函数的图象关于x=2对称,
当x∈(0,2]时,f(x)=-x2+4,在[-4,8]上y=f(x)的图象如图:
函数y=f(x)-a(a∈R)在区间[-4,8]上的零点个数最多7个,图象中的红色点.
零点之和为:-4-2+0+2+4+6+8=14.
故答案为:14.

点评 本题考查函数的零点个数,数形结合,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.空气质量问题,全民关注,有需求就有研究,某科研团队根据工地常用高压水枪除尘原理,制造了雾霾神器---雾炮,虽然雾炮不能彻底解决问题,但是能在一定程度上起到防霾、降尘的作用,经过测试得到雾炮降尘率的频率分布直方图:
若降尘率达到18%以上,则认定雾炮除尘有效.
(1)根据以上数据估计雾炮除尘有效的概率;
(2)现把A市规划成三个区域,每个区域投放3台雾炮进行除尘(雾炮之间工作互不影响),若在一个区域内的3台雾炮降尘率都低于18%,则需对该区域后期追加投入20万元继续进行治理,求后期投入费用的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|x2-1=0},B={-1,2,5},则A∩B=(  )
A.{-1,2}B.{-1}C.{-1,5}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦距为4$\sqrt{5}$,渐近线方程为2x±y=0,则双曲线的方程为(  )
A.$\frac{x^2}{4}-\frac{y^2}{16}=1$B.$\frac{x^2}{16}-\frac{y^2}{4}=1$C.$\frac{x^2}{16}-\frac{y^2}{64}=1$D.$\frac{x^2}{64}-\frac{y^2}{16}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,网格纸上正方形的边长为1,图中粗实线画出的是一个几何体的三视图,则这个几何体的表面积是(  )
A.$({1+\frac{{\sqrt{5}}}{2}})•π+2({1+\sqrt{5}})$B.$\frac{{({1+\sqrt{5}})}}{2}•π+2({1+\sqrt{5}})$C.$\frac{{({1+\sqrt{5}})}}{2}•π+2({3+\sqrt{5}})$D.$\frac{{({1+\sqrt{5}})}}{2}•π+4+\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=lnx,g(x)=-$\frac{m}{2}{x^2}+({m+1})x,m>0$.
(1)记h(x)=f(x)-g(x),讨论h(x)的单调性;
(2)若f(x)<g(x)在(0,m)上恒成立,求m的最大整数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设等比数列{an}的前n项和为Sn,若a3=2a4=2,则S6=$\frac{63}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数g(x)=$\frac{4}{x}$-alnx(a∈R),f(x)=x2+g(x).
(1)当a=-2时,试求函数g(x)的单调区间;
(2)若f(x)在区间(0,1)内有极值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,将绘有函数f(x)=2sin(ωx+φ)(ω>0,$\frac{π}{2}$<φ<π)的部分图象的纸片沿x轴折成直二面角,若AB之间的空间距离为2$\sqrt{3}$,则f(-1)=(  )
A.-2B.2C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案