【题目】自新冠肺炎疫情发生以来,某社区积极防范,并利用网络对本社区居民进行新冠肺炎防御知识讲座,为了解该社区居民对防御知识的掌握情况,随机调查了该社区100人,统计得到如下
列联表:
![]()
(1)请根据2x2列联表,判断是否有95%的把握认为防御知识掌握情况与年龄有关;
(2)为了进一步提高该社区的防御意识,该社区采用分层抽样的方法,从调查的完全掌握的居民中抽取10人,再从这10人中随机选取2人作为下一次讲座的讲解员,设X为这2人中年龄小于或等于50岁的人数,求
的分布列与数学期望.
![]()
科目:高中数学 来源: 题型:
【题目】小赵和小王约定在早上
至
之间到某公交站搭乘公交车去上学,已知在这段时间内,共有
班公交车到达该站,到站的时间分别为
,
,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将某公司200天的日销售收入(单位:万元)统计如下表(1)所示,
日销售收入 |
|
|
|
|
|
|
频数 | 12 | 28 | 36 | 54 | 50 | 20 |
频率 |
表(1)
(1)完成上述频率分布表,并估计公司这200天的日均销售收入(同一组中的数据用该组所在区间的中点值代表);
(2)已知该公司2020年第一、二季度的日销售收入如下表(2)所示,第三季度的日销售收入及其频率可用表(1)中的数据近似代替,且在2020年,当公司日销售收入为
时,员工的日绩效为100元,当公司日销售收入为
时,员工的日绩效为200元,当公司日销售收入为
时,员工的日绩效为300元.以频率估计概率.
①若在第三季度某员工的工作日中随机抽取2天,记该员工2天的绩效之和为
,求
的分布列以及数学期望;
②若每个员工每个季度的工作日为50天,估计2020年前三个季度每个员工获得的绩效的总额.
日销售收入 |
|
|
|
|
|
|
频率 | 0.2 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 |
表(2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点
是抛物线
上位于第一象限内一动点,
是焦点,圆
:
,过点
作圆
的切线交准线于
,
两点.
![]()
(Ⅰ)记直线
,
的斜率分别为
,
,若
,求点
的坐标;
(Ⅱ)若点
的横坐标
,求
面积
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,四点
,
,
,
中恰有三个点在椭圆C上,左、右焦点分别为F1、F2.
(1)求椭圆C的方程;
(2)过左焦点F1且不平行坐标轴的直线l交椭圆于P、Q两点,若PQ的中点为N,O为原点,直线ON交直线x=﹣3于点M,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)已知圆
,圆
,动圆
与圆
外切并且与圆
内切,圆心
的轨迹为曲线
.
(Ⅰ)求
的方程;
(Ⅱ)
是与圆
,圆
都相切的一条直线,
与曲线
交于
,
两点,当圆
的半径最长时,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面ABCD为直角梯形,AB//CD,![]()
是以
为斜边的等腰直角三角形,且平面
平面ABCD,点F满足,
.
![]()
(1)试探究
为何值时,CE//平面BDF,并给予证明;
(2)在(1)的条件下,求直线AB与平面BDF所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com