精英家教网 > 高中数学 > 题目详情

已知函数.
(Ⅰ)当时,讨论的单调性;
(Ⅱ)设时,若对任意,存在,使,求实数的取值范围.

(Ⅰ)当时,函数在(0,1)上单调递减;
函数在(1,+∞)上单调递增;
时,函数在(0,+∞)上单调递减;
时,函数在(0,1)上单调递减; 
函数上单调递增;
函数上单调递减,
(Ⅱ)

解析试题分析:(Ⅰ)因为
所以

(1)当
所以,当,函数单调递减;
时,,此时单调递
(2)当
,解得
①当时,恒成立,
此时,函数在(0,+∞)上单调递减;
②当
时,单调递减;
时,单调递增;
,此时,函数单调递减;
③当时,由于
时,,此时,函数单调递减;
时,,此时,函数单调递增。
综上所述:
时,函数在(0,1)上单调递减;
函数在(1,+∞)上单调递增;
时,函数在(0,+∞)上单调递减;
时,函数在(0,1)上单调递减; 
函数上单调递增;
函数上单调递减,
(Ⅱ)因为,由(Ⅰ)知,
,当
函数单调递减;当时,
函数单调递增,所以在(0,2)上的最小值为
由于“对任意,存在,使”等价于
在[1,2]上的最小值不大于在(0,2)上的最小值” (*)
,所以
①当时,因为,此时与(*)矛盾;
②当时,因为,同样与(*)矛盾;
③当时,因为
解不等式,可得
综上,的取值范围是
考点:本题主要考查应用导数研究函数的单调性及极值。
点评:典型题,本题属于导数应用中的基本问题,恒成立问题,往往通过“分离参数”,转化成求函数的最值。涉及对数函数,要特别注意函数的定义域。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数上是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分) 已知函数 
(1)求函数的定义域;     (2)求函数的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共9分)
已知函数f(x)=
(Ⅰ)求函数f(x)的定义域;
(Ⅱ)判断函数f(x)的奇偶性,并证明;
(Ⅲ)判断函数f(x)在定义域上的单调性,并用定义证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数是定义在R上的奇函数,当时,
(1)求的解析式
(2)解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知常数,函数
(1)求的值;   
(2)讨论函数上的单调性;
(3)求出上的最小值与最大值,并求出相应的自变量的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知满足,求函数的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数
(1)判断该函数在区间(2,+∞)上的单调性,并给出证明;
(2)求该函数在区间[3,6]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是奇函数,是偶函数。
(1)求的值;
(2)设对任意恒成立,求实数的取值范围。

查看答案和解析>>

同步练习册答案