精英家教网 > 高中数学 > 题目详情

(10分) 已知函数 
(1)求函数的定义域;     (2)求函数的值域。

(1)(2)

解析试题分析:(1)根据对数的真数大于零因此可知,有
故函数的定义域为    5分
(2)又因为,因此可知函数的值域为     10分
考点:函数的概念
点评:解决的关键是理解对数的真数大于零,然后得到x的范围,以及结合复合函数性质得到值域,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设二次函数满足(+2)=(2-),且方程的两实根的平方和为10,的图象过点(0,3),
⑴求()的解析式.
⑵求上的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)当时,求的单调区间;
(2)(i)设的导函数,证明:当时,在上恰有一个使得
(ii)求实数的取值范围,使得对任意的,恒有成立。
注:为自然对数的底数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数是定义域为的奇函数,(1)求实数的值;(2)证明上的单调函数;(3)若对于任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)若是定义域上的单调函数,求的取值范围;
(2)若在定义域上有两个极值点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)设函数
(1)画出函数y=f(x)的图像;
(2)若不等式,(a¹0,a、bÎR)恒成立,求实数x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数,其中e是自然数的底数,
(1)当时,解不等式
(2)当时,求正整数k的值,使方程在[k,k+1]上有解;
(3)若在[-1,1]上是单调增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当时,讨论的单调性;
(Ⅱ)设时,若对任意,存在,使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知函数
(1)求的值;
(2)当时,求函数的值域。

查看答案和解析>>

同步练习册答案