精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知函数
(1)若是定义域上的单调函数,求的取值范围;
(2)若在定义域上有两个极值点,证明:

(1)[,+∞)(2)

解析试题分析:(1)因为
所以.             
法一:若在(0,+∞)单调递增,则在(0,+∞)上恒成立,

由于开口向上,所以上式不恒成立,矛盾。
在(0,+∞)单调递减,则在(0,+∞)上恒成立,

由于开口向上,对称轴为
故只须解得
综上,的取值范围是[,+∞).
法二:令.当时,在 (0,+∞)单调递减.
时,,方程有两个不相等的正根
不妨设
则当时,
时,,这时不是单调函数.
综上,的取值范围是[,+∞).                            
(2)由(1)知,当且仅当∈(0,)时,有极小值点和极大值点





则当时,<0,在(0,)单调递减,
所以.         
考点:本小题主要考查导数的应用.
点评:导数是研究函数的单调性、极值、最值的有力工具,研究函数的性质时要注意函数的定义域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

是否存在实数使的定义域为,值域为?若存在,求出的值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共13分)
已知函数).
(Ⅰ)求函数的单调区间;
(Ⅱ)函数的图像在处的切线的斜率为若函数,在区间(1,3)上不是单调函数,求 的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数
(1)求的单调区间;
(2)若内恒成立,求实数a的取值范围;
(3),求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知函数的图象关于原点对称,且.
(1)求函数的解析式;
(2)若在[-1,1]上是增函数,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分) 已知函数 
(1)求函数的定义域;     (2)求函数的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,是方程的两根, 数列是公差为正的等差数列,数列的前项和为,且.
(1)求数列,的通项公式;
(2)记=,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数是定义在R上的奇函数,当时,
(1)求的解析式
(2)解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)是否存在实数,使是奇函数?若存在,求出的值;若不存在,给出证明。
(2)当时,恒成立,求实数的取值范围。

查看答案和解析>>

同步练习册答案