精英家教网 > 高中数学 > 题目详情

设函数
(1)当时,求的单调区间;
(2)(i)设的导函数,证明:当时,在上恰有一个使得
(ii)求实数的取值范围,使得对任意的,恒有成立。
注:为自然对数的底数。

(1)的减区间是;增区间是 
(2)在上恰有一个使得.
(ⅱ)

解析试题分析:(1)当时,   1分
时,;当时,
所以函数的减区间是;增区间是      3分
(2)(ⅰ)   4分
时,;当时,
因为,所以函数上递减;在上递增    6分
又因为
所以在上恰有一个使得.    8分
(ⅱ)若,可得在时,,从而内单调递增,而
,不符题意。       
由(ⅰ)知递减,递增,
上最大值为
若对任意的,恒有成立,则,    11分

。    13
考点:本题主要考查应用导数研究函数的单调性、最值,恒成立问题。
点评:典型题,本题属于导数应用中的基本问题,首先通过求导数,研究导数值的正负情况,确定函数单调区间。应用同样的方法,研究函数图象的形态,明确方程解的情况。作为“恒成立问题”往往转化成求函数的最值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数(常数)在处取得极大值M=0.
(Ⅰ)求的值;
(Ⅱ)当,方程有解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中.证明:当时,函数没有极值点;当时,函数有且只有一个极值点,并求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共13分)
已知函数).
(Ⅰ)求函数的单调区间;
(Ⅱ)函数的图像在处的切线的斜率为若函数,在区间(1,3)上不是单调函数,求 的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数=,数列满足。(12分)
(1)求数列的通项公式;
(2)令-+-+…+-
(3)令=+++┅,若<对一切都成立,求最小的正整数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数
(1)求的单调区间;
(2)若内恒成立,求实数a的取值范围;
(3),求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分) 已知函数 
(1)求函数的定义域;     (2)求函数的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知满足,求函数的最大值和最小值

查看答案和解析>>

同步练习册答案