精英家教网 > 高中数学 > 题目详情

(12分)已知满足,求函数的最大值和最小值

解析试题分析:由可得,                                       ……4分
所以
=,                                      ……8分
时,,                                                 ……10分
时,.                                                     ……12分
考点:本小题主要考查函数的值域.
点评:本小题实际是利用换元法求解函数的值域,换元前后要注意变量是否发生了变化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(1)当时,求的单调区间;
(2)(i)设的导函数,证明:当时,在上恰有一个使得
(ii)求实数的取值范围,使得对任意的,恒有成立。
注:为自然对数的底数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数,其中e是自然数的底数,
(1)当时,解不等式
(2)当时,求正整数k的值,使方程在[k,k+1]上有解;
(3)若在[-1,1]上是单调增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当时,讨论的单调性;
(Ⅱ)设时,若对任意,存在,使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
求(1)的值域;
(2)记的内角A、B、C的对边长分别为a,b,c,若=1,b=1,c=,求a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数,其中.(1) 讨论函数的单调性,并求出的极值;(2) 若对于任意,都存在,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
为实数,且
(1)求方程的解;
(2)若满足,试写出的等量关系(至少写出两个);
(3)在(2)的基础上,证明在这一关系中存在满足.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知函数
(1)求的值;
(2)当时,求函数的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数
(Ⅰ) 当时,求函数的最大值;
(Ⅱ)当,方程有唯一实数解,求正数的值.

查看答案和解析>>

同步练习册答案