精英家教网 > 高中数学 > 题目详情

已知函数上是增函数,求a的取值范围.

解析试题分析:(1)当时,函数上是增函数
函数 抛物线对称轴
  即
(2)当时,函数上是增函数
抛物线对称轴
   即
综上所述a的取值范围是
考点:本题主要考查复合的手术刀性质,二次函数的图象和性质。
点评:对数函数的单调性,取决于底数与1 的大小比较。复合函数的单调性遵循“内外层函数,同增异减”。特别注意函数定义域,对数真数大于0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(1)求在点处的切线方程;
(2)求在区间的最大值与最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设二次函数满足(+2)=(2-),且方程的两实根的平方和为10,的图象过点(0,3),
⑴求()的解析式.
⑵求上的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在上的函数是减函数,且是奇函数,若,求实数的范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(I)求x为何值时,上取得最大值;
(II)设是单调递增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知函数
(Ⅰ)求的单调区间;
(Ⅱ)如果当时,恒成立,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)当时,求的单调区间;
(2)(i)设的导函数,证明:当时,在上恰有一个使得
(ii)求实数的取值范围,使得对任意的,恒有成立。
注:为自然对数的底数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数是定义域为的奇函数,(1)求实数的值;(2)证明上的单调函数;(3)若对于任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当时,讨论的单调性;
(Ⅱ)设时,若对任意,存在,使,求实数的取值范围.

查看答案和解析>>

同步练习册答案