精英家教网 > 高中数学 > 题目详情
3.在公差不为零的等差数列{an}和等比数列{bn}中,已知a1=b1=1,a2=b2,a6=b3
(1)求通项an和bn
(2)求数列{an•bn}的前n项和Sn

分析 (1)利用等差数列、等比数列通项公式列出方程组,求出公差和公比,由此能求出通项an和bn
(2)由anbn=(3n-2)•4n-1.利用错位相减法能求出数列{an•bn}的前n项和.

解答 解:(1)在公差不为零的等差数列{an}和等比数列{bn}中,
∵a1=b1=1,a2=b2,a6=b3
∴$\left\{\begin{array}{l}{1+d=q}\\{1+5d={q}^{2}}\\{d≠0}\end{array}\right.$,解得d=3,q=4.
∴an=1+(n-1)×3=3n-2.
${b}_{n}=1×{4}^{n-1}={4}^{n-1}$.
(2)anbn=(3n-2)•4n-1
∴数列{an•bn}的前n项和:
Sn=1×40+4×4+7×42+…+(3n-2)×4n-1,①
4Sn=1×4+4×42+7×43+…+(3n-2)×4n,②
①-②,得:-3Sn=1+3(4+42+43+…+4n-1)-(3n-2)×4n
=1+3×$\frac{4(1-{4}^{n-1})}{1-4}$-(3n-2)×4n
=-3-(3n-3)×4n
${S}_{n}=(n+1)×{4}^{n}+1$.

点评 本题考查等差数列、等比数列的通项公式的求法,考查数列的前n项和公式的求法,考查等差数列、等比数列、数列的前n项和等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.定义函数max{f(x),g(x)}=$\left\{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}\right.$,则max{sinx,cosx}的最小值为-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某兴趣小组有9名学生.若从9名学生中选取3人,则选取的3人中恰好有一个女生的概率是$\frac{15}{28}$.
(1)该小组中男女学生各多少人?
(2)9个学生站成一列队,现要求女生保持相对顺序不变(即女生 前后顺序保持不变)重新站队,问有多少种重新站队的方法?(要求用数字作答)
(3)9名学生站成一列,要求男生必须两两站在一起,有多少种站队的方法?(要求用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知复数z=1-$\frac{1}{i}$,则$\overline{z}$=(  )
A.-1+iB.-1-iC.1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知(2x-$\frac{1}{\sqrt{x}}$)n展开式的二项式系数之和为64,则其展开式中含x3项的系数为240.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知α,β为锐角,且$cosα=\frac{{7\sqrt{2}}}{10}$,cos(α+β)=$\frac{2\sqrt{5}}{5}$,则cos2β=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{2}{3}$D.$\frac{{7\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量|$\overrightarrow a$|=4,|$\overrightarrow b$|=3,$(2\overrightarrow a-3\overrightarrow b)•(2\overrightarrow a+\overrightarrow b)=61$.
(1)求|$\overrightarrow a+\overrightarrow b$|;
(2)求向量$\overrightarrow a$在向量$\overrightarrow b$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线过点$(3,\sqrt{15})$,渐进线方程为$y=±\sqrt{3}x$,圆C经过双曲线的一个顶点和一个焦点,且圆心在双曲线上,则圆心到该双曲线的中心的距离为(  )
A.3B.$\sqrt{5}$C.$2\sqrt{6}$D.$\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个圆的圆心在抛物线y2=4x上,且该圆经过抛物线的顶点和焦点,若圆心在第一象限,圆心到直线ax+y-$\sqrt{2}$=0的距离为$\frac{\sqrt{2}}{4}$,则a=(  )
A.1B.-1C.±1D.$\frac{3}{2}$

查看答案和解析>>

同步练习册答案